![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:水利工程系
学科:港口、海岸及近海工程
电子邮箱:sunzc@dlut.edu.cn
基于BP神经网络原理的长输管道泄漏点定位及其实验研究
点击次数:
发表时间:2022-10-10
发表刊物:工程力学
卷号:27
期号:8
页面范围:169-173
ISSN号:1000-4750
摘要:Research work based on pressure gradient method shows that the location
of leakage depends on the friction factor. And the traditional methods
using the friction coefficient are not suitable for determining the
leakage location of running pipelines. The method to locate leak point
is put forward based on BP neural network forecasting friction
coefficient. The BP neural network forecasting friction factor is
determined from the average flow rate before and after leakage
occurrence. Experimental results confirm that this method can
effectively forecast the friction coefficient and reasonably locate the
leak point of long-distance pipeline
备注:新增回溯数据