孙昭晨

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:水利工程系

学科:港口、海岸及近海工程

电子邮箱:sunzc@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

基于数据驱动模型的潮位和潮流预测方法研究

点击次数:

论文类型:期刊论文

发表时间:2010-07-15

发表刊物:北京理工大学学报

收录刊物:EI、PKU、ISTIC、CSCD、Scopus

卷号:30

期号:7

页面范围:864-868

ISSN号:1001-0645

关键字:数据驱动模型;人工神经网络;海洋工程;潮位;潮流

摘要:为解决工程海域潮位、潮流资料不足给海洋工程设计和数学模型建立带来的不确定性,根据单测站潮位潮流的自相关性、对应测站潮位或潮流以及潮位与潮流之间的互相关性,建立基于数据驱动模型人工神经网络的单测站潮位、潮流(流速、流向)预测模型;多测站潮位、潮流对应预测模型;潮位与潮流对应预测模型. 以复杂海况下的实测潮位、潮流资料进行模型验证,重现了潮位、潮流自身及相互之间的非线性映射关系. 模型预测结果与现场实测数据的比较及其误差分析表明,该模型具有结构简单、精度高的优点,适用于解决工程实际问题.