![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
任职 : 模塑制品教育部工程研究中心主任
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:机械工程学院
学科:机械制造及其自动化
办公地点:大连理工大学模具研究所
联系方式:0411-84708869
电子邮箱:mjwang@dlut.edu.cn
Prediction of cutting force for ball end mill in sculptured surface based on analytic model of CWE and ICCE
点击次数:
论文类型:期刊论文
发表时间:2019-09-03
发表刊物:MACHINING SCIENCE AND TECHNOLOGY
收录刊物:EI、SCIE
卷号:23
期号:5
页面范围:688-711
ISSN号:1091-0344
关键字:Ball end mill; cutter workpiece engagement (CWE); cutting force prediction; in-cut cutting edge (ICCE); sculptured surface machining
摘要:The force prediction is the precondition of improving equipment utilization ratio and optimizing process for CNC machining. Cutter-workpiece engagement (CWE) and in-cut cutting edge (ICCE) are the keys. In this article, a new analytic method of CWE and ICCE is proposed for ball end milling of sculptured surface and the prediction model of milling force is established. The sculptured surface is discretized into a series of infinitesimal inclined planes corresponding to cutter location points. The geometry relationships of cutter axis, feed direction and inclined plane are defined parametrically. The boundary curves and the boundary inflection points of the CWE are obtained by intersecting spatial standard curved surfaces with rotation transformation of coordinate system. The effective intersection points of the CWE and the cutter edge curve in X-c-Y(c)two-dimensional plane are the upper and lower boundary points of ICCE. Based on the instantaneous chip thickness considering arbitrary feed direction, the force prediction model for ball end mill of three-axis surface milling is established. Simulation and experiment show that CWE and ICCE calculated by analytic method are well consistent with those of solid method. The predicted cutting forces match well with the measurements both in magnitude and variation trend.