个人信息Personal Information
教授
博士生导师
硕士生导师
任职 : 教育部安全科学与工程类教学指导委员会 副主任委员
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:化工学院
办公地点:大连理工大学化工学院化工机械与安全系H楼419
联系方式:0411-84986600
电子邮箱:bimsh@dlut.edu.cn
Dynamic couplings of hydrogen/air flame morphology and explosion pressure evolution in the spherical chamber
点击次数:
论文类型:期刊论文
发表时间:2018-01-25
发表刊物:INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
收录刊物:EI、SCIE
卷号:43
期号:4
页面范围:2503-2513
ISSN号:0360-3199
关键字:Flame morphology; Explosion pressure evolution; Wrinkled flame; D=7/3
摘要:This paper aims at exploring the dynamic couplings of flame morphology and explosion pressure evolution experimentally and theoretically. In the experiment, flame morphology and explosion pressure evolution under diffusional-thermal and hydrodynamic instability are recorded using high-speed schlieren photography and pressure transducer. In the theoretical calculation, the effects of cellular flame on the explosion pressure evolution are conducted using smooth flame, D = 2.0566, 2.1 and 7/3. The results demonstrate that the cellular flame formation of various equivalence ratios could be attributed to the fact Lewis number is less than unity on the lean side. The flame destabilization of Phi = 0.8 and 3.0 with increasing initial pressure is due to the decreasing flame thickness regardless of unchangeable thermal expansion ratio. Much smaller cells formation on the cellular flame surface as the explosion pressure rises could be attributed to the joint effect of the diffusional-thermal and hydrodynamic instability. Note that the explosion pressure evolution in spherical chamber is obviously underestimated assuming the flame surface is smooth during the hydrogen/air explosion. But the explosion overpressure is overpredicted significantly with D = 7/3. The theoretical overpressure with D = 2.1 is in satisfactory agreement with experimental results. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.