个人信息Personal Information
教授
博士生导师
硕士生导师
任职 : 教育部安全科学与工程类教学指导委员会 副主任委员
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:化工学院
办公地点:大连理工大学化工学院化工机械与安全系H楼419
联系方式:0411-84986600
电子邮箱:bimsh@dlut.edu.cn
Effect of monoammonium phosphate particle size on flame propagation of aluminum dust cloud
点击次数:
论文类型:期刊论文
发表时间:2019-07-01
发表刊物:JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES
收录刊物:SCIE、EI
卷号:60
页面范围:311-316
ISSN号:0950-4230
关键字:Aluminum dust explosions; Flame propagation behaviors; Particle size distribution; Surface kinetics
摘要:The effect of monoammonium phosphate (NH4H2PO4) particles on 5 um aluminum dust flames is investigated experimentally and computationally. NH4H2PO4 in three particle size is employed to determine the inhibition efficiency on aluminum flame propagation. Flame inhibition mechanism considering both gas and surface chemistry of aluminum particles is developed. Results show that the inhibition effectiveness monotonously increases as NH4H2PO4 particle size is reduced to 25 pm. Flame morphology and flame microstructure change with the addition of different particle size NH4H2PO4. Small NH4H2PO4 particles within the range studied have a greater reduction in average flame propagation compared to the coarser one. Meanwhile, the fine NH4H2PO4 particles almost decompose completely during the penetration of aluminum flame and then undergo a sufficient chemical interaction with the flame. The simulations indicate that the decomposition products of NH4H2PO4 particles obstruct the oxidation of aluminum particles through flame radical consumption. Additionally, the addition of NH4H2PO4 can reduce the vaporization rate and surface reaction rate of aluminum particles.