个人信息Personal Information
教授
博士生导师
硕士生导师
任职 : 教育部安全科学与工程类教学指导委员会 副主任委员
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:化工学院
办公地点:大连理工大学化工学院化工机械与安全系H楼419
联系方式:0411-84986600
电子邮箱:bimsh@dlut.edu.cn
Mitigation of methane/air explosion in a closed vessel by ultrafine water fog
点击次数:
论文类型:期刊论文
发表时间:2014-02-01
发表刊物:SAFETY SCIENCE
收录刊物:SCIE、EI、Scopus
卷号:62
页面范围:1-7
ISSN号:0925-7535
关键字:Methane/air explosion; Ultrafine water fog; Explosion mitigation; Cellular structure; Explosion pressure
摘要:The mitigation effect of ultrafine water fog on the methane/air explosions with methane concentrations of 6%, 9%, 11% and 13% were experimentally studied in an entire closed visual vessel. The ultrafine water fog was generated in the vessel directly by ultrasonic atomization method. A high speed camera was used to record the flame propagation processes. The explosion flame evolution processes were discussed. The experimental results indicate that the maximum explosion overpressure (Delta P-max), the pressure rising rate ((dP/dt)(max)) and the flame propagation velocity decreased after adding water fog. The presentation of flame cellular structures after adding water fog and the stifling effect of water vapor caused the extinguishing of the flame in the burned zone and slowed down the flame propagation. The water fog could mitigate the methane explosion of low concentration (6%) absolutely. When applied at the high concentration conditions (9%, 11% and 13%), the water fog still presented a significant suppression effect. The maximum decreasements of Delta P-max under the three high concentration conditions with water fog were 21.1%, 26.7% and 22.9%, respectively, while the maximum decreasements of (dP/dt)(max) were 71.7%, 77.1% and 52.0%, respectively. (C) 2013 Elsevier Ltd. All rights reserved.