Indexed by:期刊论文
Date of Publication:2017-02-01
Journal:INTERNATIONAL JOURNAL OF BIOMATHEMATICS
Included Journals:SCIE、Scopus
Volume:10
Issue:2
ISSN No.:1793-5245
Key Words:Nonlinear dynamic system; linear variational system; strong stability
Abstract:Most economic and industrial processes are governed by inherently nonlinear dynamic system in which mathematical analysis (with few exceptions) is unable to provide general solutions; even the conditions to the existence of equilibrium point for the nonlinear dynamic system are simply not established in some special cases. In this paper, based on numerical solution of a nonlinear multi-stage automatic control dynamic (NMACD) in fed-batch culture of glycerol bioconversion to 1,3-propanediol (1,3-PD) induced by Klebsiella pneumoniae (K. pneumoniae), we consider an optimal design of the NMACD system. For convenience, the NMACD system is reconstructed together with the existence, uniqueness and continuity of solutions are discussed. Our goal is to prove the strong stability with respect to the perturbation of initial state for the solution to the NMACD system. To this end, we construct corresponding linear variational system for the solution to the NMACD system, and also prove the boundedness of fundamental matrix solutions to the linear variational system. On this basis, we prove the strong stability appearing above through the application of this boundedness.
Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Gender:Male
Alma Mater:大连理工大学
Degree:Doctoral Degree
School/Department:能源与动力学院
Discipline:Thermal Engineering. Chemical Engineering. Operation Research and Control Theory
Business Address:大连理工大学能源与动力学院712室
Contact Information:电话:13940865971 邮箱:hcyin@dlut.edu.cn
Open time:..
The Last Update Time:..