Indexed by:期刊论文
Date of Publication:2011-02-01
Journal:NONLINEAR ANALYSIS-HYBRID SYSTEMS
Included Journals:SCIE、EI
Volume:5
Issue:1
Page Number:102-112
ISSN No.:1751-570X
Key Words:Complex metabolic network; Nonlinear hybrid dynamical system; Biological robustness; System identification
Abstract:The bioconversion of glycerol to 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae (K. pneumoniae) can be characterized by an intricate metabolic network of interactions among biochemical fluxes, metabolic compounds, key enzymes and genetic regulation. Since there are some uncertain factors in the fermentation, especially the transport mechanisms of substances across cell membrane, the metabolic network contains multiple possible metabolic systems. In this paper, we establish a complex metabolic network and the corresponding nonlinear hybrid dynamical system aiming to determine the most possible metabolic system. The existence, uniqueness and continuity of solutions are discussed. We quantitatively describe biological robustness and present a system identification model on the basis of robustness performance. The identification problem is decomposed into two subproblems and a procedure is constructed to solve them. Numerical results show that it is most possible that both glycerol and 1,3-PD pass the cell membrane by active transport coupling with passive diffusion under substrate-sufficient conditions, whereas, under substrate-limited conditions, glycerol passes cell membrane by active transport coupling with passive diffusion and 1,3-PD by active transport. (C) 2010 Elsevier Ltd. All rights reserved.
Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Gender:Male
Alma Mater:大连理工大学
Degree:Doctoral Degree
School/Department:能源与动力学院
Discipline:Thermal Engineering. Chemical Engineering. Operation Research and Control Theory
Business Address:大连理工大学能源与动力学院712室
Contact Information:电话:13940865971 邮箱:hcyin@dlut.edu.cn
Open time:..
The Last Update Time:..