location: Current position: Home >> Scientific Research >> Paper Publications

MOLECULAR DYNAMICS SIMULATION ON THE EFFECT OF MICRO-MOTIONS OF NANOPARTICLES IN HEAT TRANSFER ENHANCEMENT OF NANOFLUIDS

Hits:

Indexed by:会议论文

Date of Publication:2016-01-04

Included Journals:EI、CPCI-S

Volume:1

Abstract:The flow and heat transfer characteristics of nanofluids in the near-wall region were studied by non-equilibrium molecular dynamics simulation. The nanofluid model consisted of one spherical copper nanoparticle and argon atoms as base liquid. The effective thermal conductivity (ETC) of nanofluids and base fluid in shear flow fields were obtained. The ETC was increased with the increasing of shear velocity for both base fluid and nanofluids. The heat transfer enhancement of nanofluids in the shear flow field (v not equal 0) is better than that in the zero-shear flow field (v=0). By analyzing the flow characteristics we proved that the micro-motions of nanoparticles were another mechanism responsible for the heat transfer enhancement of nanofluids in the flow field. Based on the model built in the paper, we found that the thermal properties accounted for 52%-65% heat transfer enhancement and the contribution of micro-motions is 35%-48%.

Pre One:冷却油腔应用纳米流体强化活塞传热的数值模拟

Next One:Experimental visualization of gas-liquid-solid three-phase flow during reciprocating motion