个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:复旦大学
学位:博士
所在单位:物理学院
学科:凝聚态物理
办公地点:大连理工大学三束材料改性重点实验室1号楼203房间
联系方式:qyzhang@dlut.edu.cn 0411-84707930 转 13
电子邮箱:qyzhang@dlut.edu.cn
One-step synthesized nano-composite cathode material of Pr0.83BaCo1.33Sc0.5O6-delta-0.17PrCoO(3) for intermediate-temperature solid oxide fuel cell
点击次数:
论文类型:期刊论文
发表时间:2014-09-12
发表刊物:INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
收录刊物:SCIE、EI、Scopus
卷号:39
期号:27
页面范围:15039-15045
ISSN号:0360-3199
关键字:Composite materials; Phase structure; Thermal expansion behavior; Electrical conductivity; Electrochemical performance
摘要:Pr0.83BaCo1.33Sc0.5O6-delta-0.17PrCoO(3) (PBCS-0.17PCO) nano-composite material has been synthesized by a combined EDTA-citrate complexing sol gel method, and characterized as cathode material of intermediate-temperature solid oxide fuel cell (IT-SOFC). Phase structure has been characterized by X-ray diffraction (XRD) measurement. The results indicate that the composite material is composed of two cubic perovskite phases with nano-scaled grain sizes. Thermal expansion coefficient (TEC) of the composite material was measured to be 18.4 x 10(-6)/degrees C at temperatures of 30-900 degrees C. Electrical conductivities were measured in air by DC four-electrode method, and the conductivity values increase monotonically with the higher temperatures from 100 degrees C up to 750 degrees C. Electrochemical performance of the PBCS-0.17PCO composite materials was studied by electrochemical impedance spectra (EIS) measurements using GDC-based symmetric cell. Low area specific resistance (ASR) values ranging from 0.127 Omega cm(2) at 600 degrees C, 0.069 Omega cm(2) at 650 degrees C, 0.039 Omega cm(2) at 700 degrees C to 0.026 Omega cm(2) at 750 degrees C were achieved for the composite cathode, demonstrating its promising application in IT-SOFCs. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.