Hits:
Indexed by:期刊论文
Date of Publication:2017-12-01
Journal:NONLINEAR DYNAMICS
Included Journals:SCIE、EI、Scopus
Volume:90
Issue:4
Page Number:2481-2494
ISSN No.:0924-090X
Key Words:Hyperelastic cylindrical tube; Transversely isotropic compressible neo-Hookean material; Radially and axially symmetric motions; Bounded travelling wave solutions
Abstract:In this paper, the radially and axially symmetric motions are examined for a hyperelastic cylindrical tube composed of a class of transversely isotropic compressible neo-Hookean materials about the radial direction. Firstly, a system of coupled nonlinear evolution equations describing the motions of the cylindrical tube is derived by Hamilton's principle. Then the system is reduced to a system of nonlinear ordinary differential equations by the travelling wave transformations. According to the theory of planar dynamical systems, qualitative analyses on the solutions of the system are given in different parameter spaces. Specially, the influences of the material parameters on the qualitative and quantitative properties of the solutions are discussed. Two types of travelling wave solutions of the radially symmetric motion are obtained, including classical periodic travelling wave solutions and solitary wave solutions with the peak form. So does the axially symmetric motion, but solitary wave solutions with the valley form. Correspondingly, some numerical examples are shown.