• 更多栏目

    罗钟铉

    • 教授     博士生导师   硕士生导师
    • 主要任职:党委常委、副校长
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:软件学院、国际信息与软件学院
    • 学科:软件工程. 计算机应用技术
    • 办公地点:大连理工大学主楼
    • 联系方式:+86-411-84706600
    • 电子邮箱:zxluo@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Two-Layer Gaussian Process Regression With Example Selection for Image Dehazing

    点击次数:

    论文类型:期刊论文

    发表时间:2017-12-01

    发表刊物:IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY

    收录刊物:SCIE、EI

    卷号:27

    期号:12

    页面范围:2505-2517

    ISSN号:1051-8215

    关键字:Example selection; Gaussian process regression (GPR); image dehazing

    摘要:Researchers have devoted great efforts to image dehazing with prior assumptions in the past decade. Recently developed example-based approaches typically lack elegant models for the hazy process and meanwhile demand synthetic hazy images by manual selection. The priors from observations, and those trained from synthetic images cannot always reflect true structural information of natural images in practice. In this paper, we present a learning model for haze removal by using two-layer Gaussian process regression (GPR). By using training examples, the two-layer GPR establishes a direct relationship from the input image to the depth-dependent transmission, and learns local image priors to further improve the estimation. We also provide a systematic scheme to automatically collect suitable training pairs, which works for both simulated examples and images of natural scenes. Both qualitative and quantitative comparisons on real-world and synthetic hazy images demonstrate the effectiveness of the proposed approach, especially for white or bright objects and heavy haze regions in which traditional methods may fail.