• 更多栏目

    罗钟铉

    • 教授     博士生导师   硕士生导师
    • 主要任职:党委常委、副校长
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:软件学院、国际信息与软件学院
    • 学科:软件工程. 计算机应用技术
    • 办公地点:大连理工大学主楼
    • 联系方式:+86-411-84706600
    • 电子邮箱:zxluo@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    图神经网络回归的人脸超分辨率重建

    点击次数:

    论文类型:期刊论文

    发表时间:2018-01-01

    发表刊物:软件学报

    收录刊物:CSCD

    卷号:29

    期号:4

    页面范围:914-925

    ISSN号:1000-9825

    关键字:人脸图像;超分辨率;图;神经网络;回归

    摘要:人脸超分辨率(super-resolution,简称SR)即将输入模糊的低分辨率(low-resolution,简称LR)人脸图像通过一系列算法处理得到较为清晰的高分辨率(high-resolution,简称HR)人脸图像的过程.相目比自然图像,不同人脸图像的相同位置通常具有相似的结构.针对人脸图像的局部结构一致性特点,提出一种新的基于图结构的人脸超分辨率神经网络回归方法.将输入低分辨率图像表示为图结构,进而为图结构中每一个节点的局部表示训练一个浅层神经网络进行超分辨率回归.与基于规则矩形网格的方法相比,图结构在描述一个像素的局部信息时,不仅考虑到图像坐标的相关性,同时也关注了纹理的相似性,能够更好地表达图像局部特征.训练过程中,利用已收敛的相邻节点的神经网络参数初始化当前节点的神经网络参数,不仅加快了神经网络的收敛速度,而且提高了预测精度与包括深度卷积神经网络在内的基于学习的超分辨率最新算法比较,实验结果表明,所提算法取得了更高的准确率.提出的图神经网络(graphneural networks,简称GNN)并不局限于解决人脸超分辨率问题,还可以用于处理其他具有不规则拓扑结构的数据,解决不同的问题.