BvbfpPGfCTfsPCjh02KS2wi0raAQGjr88tCgrYVqQdEGe3SUNBt8Tije2V9U
  • 其他栏目

    罗钟铉

    • 教授     博士生导师 硕士生导师
    • 主要任职:党委常委、副校长
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:软件学院、国际信息与软件学院
    • 学科:软件工程. 计算机应用技术
    • 办公地点:大连理工大学主楼
    • 联系方式:
    • 电子邮箱:

    访问量:

    开通时间:..

    最后更新时间:..

    论文成果

    当前位置: 中文主页 >> 科学研究 >> 论文成果
    Nonconforming polynomial mixed finite element for the Brinkman problem over quadrilateral meshes

    点击次数:

      发布时间:2019-03-12

      论文类型:期刊论文

      发表时间:2018-08-15

      发表刊物:COMPUTERS & MATHEMATICS WITH APPLICATIONS

      收录刊物:SCIE

      卷号:76

      期号:4

      页面范围:877-892

      ISSN号:0898-1221

      关键字:Nonconforming finite element; Polynomial; Quadrilateral meshes; Uniform convergence; Discrete de Rham complex

      摘要:This work provides a new mixed finite element method for the Brinkman problem over arbitrary convex quadrilateral meshes. The velocity is approximated by piecewise polynomial element space which is H(div)-nonconforming, and the pressure is approximated by piecewise constant. We give the convergence analysis of our element, and especially show the robustness with respect to the Darcy limit. Moreover, via a discrete de Rham complex, a higher-order approximation error term is obtained for incompressible flow. Numerical examples verify our theoretical findings. (C) 2018 Elsevier Ltd. All rights reserved.