• 更多栏目

    罗钟铉

    • 教授     博士生导师   硕士生导师
    • 主要任职:党委常委、副校长
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:软件学院、国际信息与软件学院
    • 学科:软件工程. 计算机应用技术
    • 办公地点:大连理工大学主楼
    • 联系方式:+86-411-84706600
    • 电子邮箱:zxluo@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Convergence analysis of a family of 14-node brick elements

    点击次数:

    论文类型:期刊论文

    发表时间:2016-08-01

    发表刊物:JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS

    收录刊物:SCIE、EI、Scopus

    卷号:301

    页面范围:53-63

    ISSN号:0377-0427

    关键字:Nonconforming element; Brick element; Second-order elliptic problem; Smith-Kidger element; Convergence analysis; Patch test

    摘要:In this paper, we will give convergence analysis for a family of 14-node elements which was proposed by Smith and Kidger (1992). The 14 DOFs are taken as the values at the eight vertices and the six face-centroids. For second-order elliptic problems, we will show that among all the Smith-Kidger 14-node elements, Type 1, Type 2 and Type 5 elements provide optimal-order convergent solutions while Type 6 element gives one-order lower convergent solutions. Motivated by our proof, we also find that the order of convergence of the Type 6 14-node nonconforming element improves to be optimal if we change the DOFs into the values at the eight vertices and the integration values on the six faces. We also show that Type 1, Type 2 and Type 5 keep the optimal-order convergence if the integral DOFs on the six faces are adopted. (C) 2016 Elsevier B.V. All rights reserved.