金淳

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:日本长冈技术科技大学

学位:博士

所在单位:运营与物流管理研究所

学科:管理科学与工程

办公地点:经济管理学院新楼D412

联系方式:辽宁省大连市甘井子区凌工路2号 大连理工大学 经济管理学院 邮编:116024 电话:0411-84709425

电子邮箱:jinchun@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

A novel method for mining frequent itemsets using transaction matrix

点击次数:

论文类型:期刊论文

发表时间:2012-01-01

发表刊物:ICIC Express Letters, Part B: Applications

收录刊物:EI、Scopus

卷号:3

期号:5

页面范围:1147-1155

ISSN号:21852766

摘要:This paper proposes a novel frequent itemsets mining algorithm based on transaction matrix, called TMA, to improve the efficiency of finding frequent itemsets for personalized recommendations. By constructing a data structure named Transaction Matrix, TMA creates candidate itemsets by scanning database only once. Meanwhile, a series of processes composed of AND and XOR operations is designed to generate candidate itemsets, which can compress candidate searching space and avoid redundant candidates by deleting infrequent itemsets during mining frequent itemsets. To evaluate the performance of our algorithm, experiments are carried out on four different datasets, and the results show that TMA outperforms three other algorithms in terms of the efficiency. Thus, TMA has a better applicability for precise personalized recommendation. ? 2012 ICIC International.