金淳

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:日本长冈技术科技大学

学位:博士

所在单位:运营与物流管理研究所

学科:管理科学与工程

办公地点:经济管理学院新楼D412

联系方式:辽宁省大连市甘井子区凌工路2号 大连理工大学 经济管理学院 邮编:116024 电话:0411-84709425

电子邮箱:jinchun@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

面向个性化推荐的快速关联规则挖掘算法

点击次数:

论文类型:期刊论文

发表时间:2011-01-01

发表刊物:情报学报

收录刊物:PKU、ISTIC、CSSCI

卷号:30

期号:9

页面范围:963-972

ISSN号:1000-0135

关键字:关联规则挖掘;个性化推荐;事务矩阵;用户兴趣度;移动电子商务

摘要:关联规则挖掘是解决电子商务推荐问题的重要方法之一.针对传统关联规则挖掘算法在解决移动电子商务环境个性化推荐问题时反复扫描数据库,频繁项挖掘效率低,关联规则挖掘准确率低以及规则大量冗余等不足,提出一个基于事务矩阵和用户兴趣度的关联规则挖掘算法(Matrix-and-Interestingness-based Association Rules Mining,MIbARM).该算法仅需扫描一次数据库,并在挖掘过程中不断缩小算法搜索空间以避免生成冗余候选项,同时避免了冗余规则挖掘,从而提高了挖掘效率.最后,在四组人工数据和160种参数组合的数值实验环境下,引入Apriori、CBAR 及BitTableFI算法对MIbARM进行对比验证.结果表明,在不减少有趣规则的前提下,MIbARM不但可有效避免冗余候选项集的产生,而且大幅减少了冗余规则数量,极大提高了算法的搜索效率,同时提升了个性化推荐的质量,更适用于移动电子商务环境下的个性化推荐问题.