贾振元

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:校长、党委副书记

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:机械工程学院

电子邮箱:jzyxy@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

A new cutting force prediction method in ball-end milling based on material properties for difficult-to-machine materials

点击次数:

论文类型:期刊论文

发表时间:2016-10-01

发表刊物:INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY

收录刊物:SCIE、EI、Scopus

卷号:86

期号:9-12

页面范围:2807-2822

ISSN号:0268-3768

关键字:Cutting force modeling; Material property; Ball-end milling; High-speed milling; Curved surface; Difficult-to-machine material

摘要:As the machining process is remarkably influenced by the cutting force, its prediction is of great significance. For most of the commonly used cutting force prediction models, they are no longer applicable once the workpiece material is altered. Consequently, a new ball-end milling force prediction method with the consideration of the workpiece material properties is presented in this study for difficult-to-machine materials in high-speed milling. Based on differential and oblique cutting mechanisms, the metal cutting process in this method is taken as the linear superposition of a series of differential oblique cutting processes. With laboring the force-loading status of rake face, the yield strength, the heat conductivity, and the plasticity of the material which are the most important factors to influence cutting force are involved as the input elements. Furthermore, the interaction between material properties and machining conditions is also introduced to broadened the scope of applications of this method. In accordance with specific needs, an inverse method using the average cutting force of a single disk after cutting edge discretization is proposed to obtain the specific coefficients, and the cutter engagement is determined by Z-map method. Finally, the comparison between the simulated result and the experimental result confirms the effectiveness of the presented method for different difficult-to-machine materials in high-speed milling based on slot milling and curved surface milling.