贾振元

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:机械工程学院

电子邮箱:jzyxy@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

A Five-Axis Dual NURBS Interpolator With Constant Speed at Feedrate-Sensitive Regions Under Axial Drive Constraints

点击次数:

论文类型:期刊论文

发表时间:2019-06-01

发表刊物:JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME

收录刊物:SCIE、EI

卷号:141

期号:6

ISSN号:1087-1357

关键字:five-axis machine tool; dual NURBS interpolator; feedrate scheduling; drive constraint; trajectory generation

摘要:In the five-axis machining, the dual nonuniform rational B-spline (NURBS) interpolator performs better than the conventional linear interpolator in improving machining efficiency and quality. However, a successful dual NURBS interpolator faces with two aspects of issues. First, the feedrate should be reasonably scheduled according to axial drive constraints. Furthermore, the axial trajectories should be precisely and rapidly calculated according to the scheduled feedrate. To schedule the feedrate, existing methods use either overall constant speed or frequent time-varying speed. However, the former one is adverse to the motion efficiency, while the latter one is adverse to the motion stability. To deal with these issues, this study schedules feedrate-sensitive and nonsensitive regions and plans constant speed at the sensitive regions and smooth transition speed within the nonsensitive regions, thus balancing the motion stability and the efficiency. In addition, to calculate the axial trajectories, existing methods, using inverse kinematics, result in multiple solutions due to the existence of antitrigonometric functions, and this requires complicated selection of the solutions, otherwise the axial positions will be discontinuity. To deal with this issue, this study proposes a Jacobi matrix-based Adams prediction-correction numerical algorithm, which uses the incremental value of the tool pose to calculate the consecutive unique solution of the five-axis positions directly. By integrating above techniques, a systematic five-axis dual NURBS interpolator with the constant speed at feedrate-sensitive regions under axial drive constraints is presented. Experimental tests are conducted to evaluate the effectiveness of the proposed method.