个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:机械工程学院
电子邮箱:jzyxy@dlut.edu.cn
A review of contouring-error reduction method in multi-axis CNC machining
点击次数:
论文类型:期刊论文
发表时间:2021-01-25
发表刊物:INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE
卷号:125
页面范围:34-54
ISSN号:0890-6955
关键字:Contouring-error; Tracking-error; Contour control; Error compensation; Curved surface; Multi-axis CNC machining
摘要:With the rapid development of aerospace, energy, and power technologies, the demand for high-performance parts with complex curved surface is increasingly large, and the multi-axis Computer-Numerical-Control (CNC) precision machining technique for such parts becomes a popular and difficult issue in the industrial field. In order to ensure the high-performance of complex curved surface parts, the requirement of the contour accuracy is higher and higher for such parts due to the important role they play in these fields. However, the limitation of dynamic properties for the CNC machine tools, which leads to the contouring-error, becomes a vital issue that affects the machining accuracy of the high-performance parts with complex curved surface. The contouring-error, defined as the orthotropic distance from the actual motion position of machine tool to the desired contour of curved surface in multi-axis contour-following tasks, is caused by the facts such as servo lag, dynamics mismatch, external disturbances, and so forth. The reduction of the contouring-error becomes of great significance for promoting the performance of CNC motion systems thus realizing the high-speed and high-precision machining, and the research on the contouring-error reduction in multi-axis CNC machining is therefore a hotspot issue in the machining engineering. This paper provides a comprehensive review to the state of the art of the contouring-error reduction methods. The massive and complicated studies on constraining the contouring-errors are classified and summarized, and accordingly, the advantages and the disadvantages of different kinds of methods are discussed and compared, which has a guiding significance for selection of the interested contouring-error reduction method. Furthermore, this paper systematically suggests the probable future studies that remain vacant and meaningful based on the discussion of the state of the art. Significantly, it is possible for active promoting and developing to further improve the contouring-error reduction of the complex curved surface parts in multi-axis CNC machining.