![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:校长、党委副书记
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:机械工程学院
电子邮箱:jzyxy@dlut.edu.cn
Hybrid of simulated annealing and SVM for hydraulic valve characteristics prediction
点击次数:
论文类型:期刊论文
发表时间:2011-07-01
发表刊物:EXPERT SYSTEMS WITH APPLICATIONS
收录刊物:SCIE、EI
卷号:38
期号:7
页面范围:8030-8036
ISSN号:0957-4174
关键字:Characteristics prediction; Simulated annealing; SVM; Hydraulic valve
摘要:Accurate prediction for the synthesis characteristics of hydraulic valve in industrial production plays an important role in decreasing the repair rate and the reject rate of the product. Recently, Support Vector Machine (SVM) as a highly effective mean of system modeling has been widely used for predicting. However, the important problem is how to choose the reasonable input parameters for SVM. In this paper, a hybrid prediction method (SA-SVM for short) is proposed by using simulated annealing (SA) and SVM to predict synthesis characteristics of the hydraulic valve, where SA is used to optimize the input parameters of SVM based prediction model. To validate the proposed prediction method, a specific hydraulic valve production is selected as a case study. The prediction results show that the proposed prediction method is applicable to forecast the synthesis characteristics of hydraulic valve and with higher accuracy. Comparing with Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Networks (ANN) are also made. (C) 2010 Elsevier Ltd. All rights reserved.