Hits:
Indexed by:期刊论文
Date of Publication:2008-05-28
Journal:Discrete Applied Mathematics
Included Journals:EI
Volume:156
Issue:10
Page Number:1892-1907
Abstract:Ringeisen and Beineke have proved that cr (C3 Cn) = n and cr (K4 Cn) = 3 n. Bokal has proved that cr (K1, l Pn) = (n - 1) ?frac(l, 2) ? ?frac(l - 1, 2) ? In this paper we study the crossing numbers of Km Cnand Km, l Pn, and show (i) cr (Km Cn) ?n · cr (Km + 2) for n ?3 and m ?5; (ii) cr (Km Cn) ?frac(n, 4) ?frac(m + 2, 2) ? ?frac(m + 1, 2) ? ?frac(m, 2) ? ?frac(m - 1, 2) ?for m = 5, 6, 7 and for m ?8 with even n ?4, and equality holds for m = 5, 6, 7 and for m = 8, 9, 10 with even n ?4 and (iii) cr (Km, l Pn) ?(n - 1) ( ?frac(m + 2, 2) ? ?frac(m + 1, 2) ? ?frac(l + 2, 2) ? ?frac(l + 1, 2) ?- ml) + 2 ( ?frac(m + 1, 2) ? ?frac(m, 2) ? ?frac(l + 1, 2) ? ?frac(l, 2) ?- ?frac(m, 2) ? ?frac(l, 2) ? for min (m, l) ?2, and equality holds for min (m, l) = 2. © 2007 Elsevier B.V. All rights reserved.