个人信息Personal Information
教授
博士生导师
硕士生导师
性别:女
毕业院校:大连理工大学
学位:博士
所在单位:计算机科学与技术学院
电子邮箱:datas@dlut.edu.cn
A Feature Selection Method Based on Feature Grouping and Genetic Algorithm
点击次数:
论文类型:会议论文
发表时间:2015-06-14
收录刊物:EI、CPCI-S、Scopus
卷号:9243
页面范围:150-158
关键字:Feature selection; Symmetrical uncertainty; Feature grouping; Genetic algorithm
摘要:Feature selection technique has shown its power in analyzing the high dimensional data and building the efficient learning models. This study proposes a feature selection method based on feature grouping and genetic algorithm (FS-FGGA) to get a discriminative feature subset and reduce the irrelevant and redundancy data. Firstly, it eliminates the irrelevant features using the symmetrical uncertainty between features and class labels. Then, it groups the features by Approximate Markov blanket. Finally, genetic algorithm is applied to search the optimal feature subset from the different groups. Experiments on the eight public datasets demonstrate the effectiveness and superiority of FS-FGGA in comparison with SVM-RFE and ECBGS in most cases.