林晓惠

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:计算机科学与技术学院

电子邮箱:datas@dlut.edu.cn

扫描关注

论文成果

当前位置: 算法设计与分析 >> 科学研究 >> 论文成果

A novel analysis method for biomarker identification based on horizontal relationship: identifying potential biomarkers from large-scale hepatocellular carcinoma metabolomics data

点击次数:

论文类型:期刊论文

发表时间:2019-09-01

发表刊物:ANALYTICAL AND BIOANALYTICAL CHEMISTRY

收录刊物:PubMed、SCIE、EI

卷号:411

期号:24,SI

页面范围:6377-6386

ISSN号:1618-2642

关键字:LC-MS/MS; Biomarker identification; Networks; Metabolomics; HCC

摘要:Omics techniques develop quickly and have made a great contribution to disease study. Omics data are usually complex. How to analyze the data and mine important information has been a key part in omics research. To study the nature of disease mechanisms systematically, we propose a new data analysis method to define the network biomarkers based on horizontal comparison (DNB-HC). DNB-HC performs molecule horizontal relationships to characterize the physiological status and differential network analysis to screen the biomarkers. We applied DNB-HC to analyze a large-scale metabolomics data, which contained 550 samples from a nested case-control hepatocellular carcinoma (HCC) study. A network biomarker was defined, and its areas under curves (AUC) in the receiver-operating characteristic (ROC) analysis for HCC discrimination were larger than those defined by six efficient feature selection methods in most cases. The effectiveness was further corroborated by another nested HCC dataset. Besides, the performance of the defined biomarkers was better than that of alpha-fetoprotein (AFP), a commonly used clinical biomarker for distinguishing HCC from high-risk population of liver cirrhosis in other two independent metabolomics validation sets. All and 90.3% of the AFP false-negative patients with HCC were correctly diagnosed in these two sets, respectively. The experimental results illustrate that DNB-HC can mine more important information reflecting the nature of the research problems by studying the feature horizontal relationship systematically and identifying effective disease biomarkers in clinical practice.