个人信息Personal Information
教授
博士生导师
硕士生导师
性别:女
毕业院校:大连理工大学
学位:博士
所在单位:计算机科学与技术学院
电子邮箱:datas@dlut.edu.cn
The Crossing Numbers of Cartesian Product of Cone Graph C-m + (K-l)over-bar with Path P-n
点击次数:
论文类型:期刊论文
发表时间:2011-01-01
发表刊物:ARS COMBINATORIA
收录刊物:Scopus、SCIE
卷号:98
页面范围:433-445
ISSN号:0381-7032
关键字:crossing number; Cartesian product; cone graph; path; wheel
摘要:Crossing numbers of graphs are in general very difficult to compute. There are several known exact results on the crossing numbers of Cartesian products of paths, cycles or stars with small graphs. In this paper we study cr(W-l,W-m square P-n), the crossing number of Cartesian product W-l,W-m square P-n, where W-l,W-m be the cone graph C-m + (K-l) over bar. Klesc showed that cr(W-1,W-3 square P-n) = 2n(Journal of Graph Theory, 6(1994), 605-614), cr(W-1,W-4 square P-n) = 3n - 1 and cr(W-2,W-3 square P-n) = 4n(Discrete Mathematics, 233(2001), 353-359). Huang et al. showed that cr(W-1,W-m square P-n) = (n - 1)[m/2][m-1/ 2] + n + 1 for n <= 3(Journal of Natural Science of Hunan Normal University, 28(2005), 14-16). We extend these results and prove cr(W-1,W-m square P-n) = (n -1)[m/2][m-1/ 2] + n + 1 and cr(W-2,W-m square P-n) = 2n[m/2][m-1/ 2] + 2n.