林晓惠
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:女
毕业院校:大连理工大学
学位:博士
所在单位:计算机科学与技术学院
电子邮箱:datas@dlut.edu.cn
扫描关注
The crossing number of flower snarks and related graphs
点击次数:
论文类型:期刊论文
发表时间:2008-01-01
发表刊物:ARS COMBINATORIA
收录刊物:SCIE
卷号:86
页面范围:57-64
ISSN号:0381-7032
关键字:crossing number; cubic graph; flower snark
摘要:For odd n >= 5, the Flower Snark F-n = (V, E) is a simple undirected cubic graph with 4n vertices, where V = {a(i) : 0 <= i <= n - 1} U {b(i) : 0 <= i <= n - 1} boolean OR {c(i) : 0 <= i <= 2n - 1} and E={b(i)b((i+i)) (mod n) : 0 <= i <= n-1}boolean OR{c(i)c((i+1) mod 2n) : 0 <= i <= 2n - 1} boolean OR {a(i)b(i), a(i)c(i), a(i)c(n+i) : 0 <= i <= n - 1}. For n = 3 or even n >= 4, F-n is called the related graph of Flower Snark. We show that the crossing number of F-n equals n - 2 if 3 <= n <= 5, and n if n >= 6.