林晓惠

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:计算机科学与技术学院

电子邮箱:datas@dlut.edu.cn

扫描关注

论文成果

当前位置: 算法设计与分析 >> 科学研究 >> 论文成果

The crossing number of flower snarks and related graphs

点击次数:

论文类型:期刊论文

发表时间:2008-01-01

发表刊物:ARS COMBINATORIA

收录刊物:SCIE

卷号:86

页面范围:57-64

ISSN号:0381-7032

关键字:crossing number; cubic graph; flower snark

摘要:For odd n >= 5, the Flower Snark F-n = (V, E) is a simple undirected cubic graph with 4n vertices, where V = {a(i) : 0 <= i <= n - 1} U {b(i) : 0 <= i <= n - 1} boolean OR {c(i) : 0 <= i <= 2n - 1} and E={b(i)b((i+i)) (mod n) : 0 <= i <= n-1}boolean OR{c(i)c((i+1) mod 2n) : 0 <= i <= 2n - 1} boolean OR {a(i)b(i), a(i)c(i), a(i)c(n+i) : 0 <= i <= n - 1}. For n = 3 or even n >= 4, F-n is called the related graph of Flower Snark. We show that the crossing number of F-n equals n - 2 if 3 <= n <= 5, and n if n >= 6.