location: Current position: Home >> Scientific Research >> Paper Publications

Study of hydrogen gas production coupled with phenol electrochemical oxidation degradation at different stages

Hits:

Indexed by:期刊论文

Date of Publication:2014-04-01

Journal:CHEMICAL ENGINEERING JOURNAL

Included Journals:SCIE、EI、Scopus

Volume:241

Page Number:167-174

ISSN No.:1385-8947

Key Words:Hydrogen gas production; Phenol; Electrochemical oxidation degradation; Kinetic; Energy efficiency

Abstract:Hydrogen gas production coupled with phenol electrochemical oxidation was investigated in a novel two-region equipment. The phenol degradation, COD removal, hydrogen production, kinetic, Instantaneous Current Efficiency for COD removal (ICECOD), and hydrogen gas yield (Y-H2) of simulated phenol solution electrochemical oxidation degradation at 3 V applied voltage were surveyed. The results indicated that three stages were observed during the electrochemical oxidation of simulated phenol in this study. The kinetic study showed that first order model well described each stage of phenol electrochemical oxidation process. The ICECOD increased slightly at the initial stage, and dramatically at the second stage, while fell at the finally stage, indicating water molecules were finally participated in the formation of hydrogen due to the degradation of phenol and COD. Hydrogen products from redox reaction of H+ which release from the degradation of organics oxidation reaction at the anode. Furthermore, the mechanism was discussed and showed that phenol transformed into benzoquinone intermediate in the first step, then the ring was broken and further oxidized into organic compounds like muconic acid, maleic acid or oxalic acid as intermediates in the followed stage, and finally disintegrated into CO2 and H2O in electrochemical oxidation process, which demonstrated by the UV and LC-MS images analysis. It could be seen that hydrogen gas production coupled with organic wastewaters electrochemical oxidation would be an effective approach for energy recovery and wastewater reutilization. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved.

Pre One:Adsorption of nickel ions from seawater by modified chitosan

Next One:Biosorption of nickel ions by modified chitosan from aqueous solutions