Hits:
Indexed by:期刊论文
Date of Publication:2018-09-01
Journal:JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES
Included Journals:SCIE
Volume:55
Page Number:134-143
ISSN No.:0950-4230
Key Words:Ethylene/polyethylene hybrid explosions; Polyethylene particle size distributions; Flame propagation behaviors; Flame temperatures
Abstract:To reveal clearly the effects of particle size distributions on flame propagations during hybrid explosions, ethylene/polyethylene hybrid explosions with different polyethylene particle size distributions were experimentally studied. Experimental results showed that flame propagation velocities and maximum flame temperatures increased with the decrease of particle size distribution as a whole. Due to the serious agglomeration of polyethylene when the concentration of ethylene was 0.5%, flame propagation velocities and maximum flame temperatures of the < 75 mu m polyethylene hybrid mixture were lower than those of the 75-100 mu m polyethylene hybrid mixture when dust concentration was less than a certain range. The maximum flame temperature of the 100-212 mu m polyethylene hybrid mixture was higher than those of the < 75 gm and 75-100 mu m polyethylene hybrid mixtures when dust concentration > 500 g/m(3), which was attributed to the combustion behavior of the molten polyethylene particles. The maximum flame temperatures of 2.3% ethylene hybrid mixtures increased slightly as particle size distribution decreased. The maximum flame temperatures of the 2.3% ethylene hybrid mixtures of particle size distributions < 75 mu m, 75-100 mu m, and 100-212 mu m were 1776 degrees C, 1759 degrees C, and 1758 degrees C respectively. Ethylene/polyethylene hybrid flame consisted of the premixed gas flame followed by the diffusing dust flame. With the increase of particle size distribution, the large particle pyrolysis zone without visible flame would exist between the premixed flame zone and the dust flame zone.