• 其他栏目

    顾宏

    • 教授     博士生导师 硕士生导师
    • 性别:男
    • 毕业院校:浙江大学
    • 学位:博士
    • 所在单位:控制科学与工程学院
    • 学科:模式识别与智能系统
    • 办公地点:创新园大厦B0715
    • 电子邮箱:

    访问量:

    开通时间:..

    最后更新时间:..

    论文成果

    当前位置: 中文主页 >> 科学研究 >> 论文成果
    Prediction of chaotic time series based on neural network with legendre polynomials

    点击次数:

      发布时间:2019-03-11

      论文类型:期刊论文

      发表时间:2009-05-26

      发表刊物:Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

      收录刊物:Scopus、CPCI-S、EI

      卷号:5551 LNCS

      期号:PART 1

      页面范围:836-843

      ISSN号:3642015069

      关键字:Neural network; Legendre orthogonal polynomials; Kalman filtering; Singular value decomposition; Chaotic time series

      摘要:In this paper, a modeling method based on the orthogonal function neural network is proposed. Legendre orthogonal polynomials are selected as the basic functions of the neural network. Kalman filtering algorithm with singular value decomposition is used to confirm the parameters of orthogonal function neural network in order to avoid error delivery and error accumulation. To demonstrate the performance of this modeling method, the simulation on Mackey-Glass chaotic time series is performed. The results show that this method provides effective and accurate prediction. © 2009 Springer Berlin Heidelberg.