• 更多栏目

    顾宏

    • 教授     博士生导师   硕士生导师
    • 性别:男
    • 毕业院校:浙江大学
    • 学位:博士
    • 所在单位:控制科学与工程学院
    • 学科:模式识别与智能系统
    • 办公地点:创新园大厦B0715
    • 电子邮箱:guhong@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Combining intrinsic disorder prediction and augmented training of hidden Markov models improves discriminative motif discovery

    点击次数:

    论文类型:期刊论文

    发表时间:2015-08-01

    发表刊物:CHEMICAL PHYSICS LETTERS

    收录刊物:SCIE、EI、Scopus

    卷号:634

    页面范围:243-248

    ISSN号:0009-2614

    摘要:Identifying short linear motifs (SLiMs) usually suffers from lack of sufficient sequences. SLiMs with the same functional site class are typically characterized by similar motif patterns, which makes them hard to distinguish by generative motif discovery methods. A discriminative method based on maximal mutual information estimation (MMIE) of hidden Markov models (HMMs) is proposed. It masks ordered regions to improve signal to noise ratio and augments the training set to diminish the impact of the lack of sequences. Experimental results on a dataset selected from the Eukaryotic Linear Motif (ELM) resource show that the proposed method is effective and practical. (C) 2015 Elsevier B.V. All rights reserved.