• 其他栏目

    顾宏

    • 教授     博士生导师 硕士生导师
    • 性别:男
    • 毕业院校:浙江大学
    • 学位:博士
    • 所在单位:控制科学与工程学院
    • 学科:模式识别与智能系统
    • 办公地点:创新园大厦B0715
    • 电子邮箱:

    访问量:

    开通时间:..

    最后更新时间:..

    论文成果

    当前位置: 中文主页 >> 科学研究 >> 论文成果
    Local density one-class support vector machines for anomaly detection

    点击次数:

      发布时间:2019-03-09

      论文类型:期刊论文

      发表时间:2011-04-01

      发表刊物:NONLINEAR DYNAMICS

      收录刊物:EI、SCIE、Scopus

      卷号:64

      期号:1-2

      页面范围:127-130

      ISSN号:0924-090X

      关键字:One class support vector machine; Anomaly detection; Local density degree

      摘要:Anomalies are patterns in data that do not conform to a well-defined notion of normal behavior. One-class Support Vector Machines calculate a hyperplane in the feature space to distinguish anomalies, however, it may not identify the ideal hyperplane especially when the support vectors do not have the overall characteristics of the target data. So, we propose a new local density OCSVM by incorporating distance measurements based on local density degree to reflect the distribution of a given data set. Experimental results on UCI data sets show that the proposed method can achieve better performance than other one class learning schemes.