• 更多栏目

    顾宏

    • 教授     博士生导师   硕士生导师
    • 性别:男
    • 毕业院校:浙江大学
    • 学位:博士
    • 所在单位:控制科学与工程学院
    • 学科:模式识别与智能系统
    • 办公地点:创新园大厦B0715
    • 电子邮箱:guhong@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    基于IPSO-SVM的地铁车辆牵引控制单元故障诊断

    点击次数:

    论文类型:期刊论文

    发表时间:2015-01-22

    发表刊物:大连理工大学学报

    收录刊物:PKU、ISTIC、CSCD、Scopus

    卷号:55

    期号:1

    页面范围:67-72

    ISSN号:1000-8608

    关键字:牵引控制单元;故障诊断;支持向量机(SVM);改进粒子群优化(IPSO)算法

    摘要:地铁车辆牵引控制单元(TCU)是地铁系统的核心单元之一,准确诊断其故障状态对整个地铁车辆安全运行至关重要.基于数据的故障诊断方法是当前热点方法之一.针对牵引控制单元故障诊断中检测参数多、故障类别多的特点,提出了改进的粒子群优化支持向量机(IPSO-SVM)方法,克服了传统方法存在过拟合、收敛速度慢、易陷入局部最优的缺点.使用UCI机器学习数据库中的5个数据集进行仿真实验,结果表明:IPSO-SVM 分类精度高于ICPSO-SVM、PSO-SVM、GA-SVM.进一步将此方法应用于地铁车辆实际数据,同样得到了较好的分类结果,验证了所提方法的有效性.