张兴文

个人信息Personal Information

副教授

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:环境学院

电子邮箱:zhwen@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Intensified internal electrolysis for degradation of methylene blue as model compound induced by a novel hybrid material: Multi-walled carbon nanotubes immobilized on zero-valent iron plates (Fe-0-CNTs)

点击次数:

论文类型:期刊论文

发表时间:2013-02-01

发表刊物:CHEMICAL ENGINEERING JOURNAL

收录刊物:SCIE、EI

卷号:217

页面范围:99-107

ISSN号:1385-8947

关键字:Carbon nanotubes; Micro-electrolysis; Electrophoresis deposition; Methylene blue; Zero-valent iron

摘要:This paper reported a novel iron-carbon hybrid material (Fe-0-CNTs) as a technical improvement of internal electrolysis for water treatment. This material was fabricated by means of electrophoresis deposition (EPD) to immobilize carbon nanotubes on the surface of zero-valent iron plate and then stabilized by calcinations. The reactivity of Fe-0-CNTs was examined by the degradation kinetics of methylene blue (MB) used as model compound. The presence of Fe-0-CNTs material in water induced considerable enhancement in reaction rates, which was attributed to the numerous microscopic iron-carbon galvanic cells formed in situ. The oxidative pretreatment of carbon nano-tubes largely facilitated the electrochemical process due to the improvement in surface chemistry. The thickness of CNTs layer was optimized at about 10 gm (EPD time of 3 min) for a better performance of Fe-0-CNTs. The Fenton-like oxidation chain reactions following Reactions (1)-(3) was verified to play the key role on the degradation of target organics. The direction of this pathway has been analyzed to depend on a complex stoichiometrical relation between hydrogen ion (H+) and dissolved oxygen (DO), since side reactions may also take place consuming both of them. This functionalized Fe-0-CNTs material working through micro-electrolysis exhibited appreciable advantages in terms of reactivity, durability and operational simplicity. The knowledge gained from the effect of solution environments is of importance for process control. (c) 2012 Elsevier B.V. All rights reserved.