location: Current position: Home >> Scientific Research >> Paper Publications

A new time- and space-dependent model for predicting frost formation

Hits:

Indexed by:期刊论文

Date of Publication:2011-03-01

Journal:APPLIED THERMAL ENGINEERING

Included Journals:SCIE、EI

Volume:31

Issue:4

Page Number:447-457

ISSN No.:1359-4311

Key Words:Frost formation and growth; Nucleation theory; CFD; Numerical simulation

Abstract:In this paper, a new CFD (Computational Fluid Dynamics) model is proposed to predict frost formation and growth with the benefit of the nucleation theory. This model can be applied to describe the initial and growth period of frost formation and also to reflect the influence of surface structure on frost development. Both spatial and temporal variation of the frost configuration and its properties can be predicted. The phenomena of frost formation on a cold surface placed in a stream of humid air are simulated using this model. The proposed model is validated in comparison with data arising from one experiment and two accepted numerical models. The results show that the frost grows faster in the upstream region. In the initial period, the mass transfer, from water vapor to frost layer, mainly contributes to the increase of frost thickness. In contrast, it mainly contributes to the increase of density in the fully developed period. The effects of inlet air velocity are discussed as well. (C) 2010 Elsevier Ltd. All rights reserved.

Pre One:A numerical study on heat transfer performance of microchannels with different surface microstructures

Next One:冷冻干燥参数对塌陷温度的影响分析