Current position: Home >> Scientific Research >> Paper Publications

Double coupled canonical polyadic decomposition of third-order tensors: Algebraic algorithm and relaxed uniqueness conditions

Release Time:2019-07-01  Hits:

Indexed by: Journal Papers

Date of Publication: 2019-04-01

Journal: SIGNAL PROCESSING-IMAGE COMMUNICATION

Included Journals: SCIE

Volume: 73

Issue: ,SI

Page Number: 22-36

ISSN: 0923-5965

Key Words: Tensor; Canonical polyadic decomposition; Double coupled; Algebraic algorithm; Uniqueness

Abstract: Double coupled canonical polyadic decomposition (DC-CPD) decomposes multiple tensors with coupling in the first two modes, into minimal number of rank-1 tensors that also admit the double coupling structure. It has a particular interest in joint blind source separation (J-BSS) applications. In a preceding paper, we proposed an algebraic algorithm for underdetermined DC-CPD, of which the factor matrices in the first two modes of each tensor may have more columns than rows. It uses a pairwise coupled rank-1 detection mapping to transform a possibly underdetermined DC-CPD into an overdetermined DC-CPD, which can be solved algebraically via generalized eigenvalue decomposition (GEVD). In this paper, we generalize the pairwise or second-order coupled rank-1 detection mapping to an arbitrary order K >= 2. Based on this generalized coupled rank-1 detection mapping, we propose a broad framework for the algebraic computation of DC-CPD, which consists of a series of algorithms with more relaxed working assumptions, each corresponding to a fixed order K >= 2. Deterministic and generic uniqueness conditions are provided. We will show through analysis and numerical results that our new uniqueness conditions for DC-CPD are more relaxed than the existing results for DC-CPD and CPD. We will further show, through simulation results, the performance of the proposed algebraic DC-CPD framework in approximate DC-CPD and a J-BSS application, in comparison with existing DC-CPD and CPD algorithms.

Prev One:Machine Learning for Medical Imaging

Next One:基于四阶累积量张量联合对角化的多数据集联合盲源分离