个人信息Personal Information
副教授
博士生导师
硕士生导师
性别:男
毕业院校:香港城市大学
学位:博士
所在单位:材料科学与工程学院
电子邮箱:apwangym@dlut.edu.cn
Structural Modulations in the Rare-Earth Metal Digermanides REAl1-x,Ge-2 (RE = Gd-Tm, Lu, Y; 0.8 < x < 0.9). Correlations between Long- and Short-Range Vacancy Ordering
点击次数:
论文类型:期刊论文
发表时间:2015-02-02
发表刊物:INORGANIC CHEMISTRY
收录刊物:SCIE、Scopus
卷号:54
期号:3
页面范围:722-732
ISSN号:0020-1669
摘要:Rare-earth metal aluminum germanides with the general formula REAl1-xGe2 (RE = Gd, Tb, Dy, Ho, Er, Tm, Lu, and Y) have been synthesized by direct fusion of the corresponding elements. The structures have been studied by single-crystal X-ray diffraction and selected-area electron diffraction (SAED). The average structure represents a randomly stuffed variant of the orthorhombic ZrSi2 structure type, also known as the CeNi1-xSi2 type (Pearson symbol oC16; space group Cmcm). The SAED patterns for selected members of the family suggest the coexistence of commensurate and incommensurate structural modulations. The most prominent model for long-range vacancy ordering is the Tb4FeGe8 type (Pearson symbol mP26; space group P2(1)/n), which is the commensurate 4-fold superstructure of CeNi1-xSi2 (x = 3/4). Short-range correlations cause additional deviations in the 4-fold superlattice. These results shed more light on the structural complexity as a function of the aluminum vacancies and size of the rare-earth metal. Magnetic susceptibility measurements are presented and discussed. The measured ordering temperatures and calculated ones based on empirical rules and Ruderman-Kittel-Kasuya-Yosida interactions are shown to be in close agreement.