Zhan Kang
Professor Supervisor of Doctorate Candidates Supervisor of Master's Candidates
Main positions:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
Other Post:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
Gender:Male
Alma Mater:Stuttgart University, Germany
Degree:Doctoral Degree
School/Department:Department of Engineering Mechanics/ State Key Laboratory of Structural Analysis for Industrial Equimpment
Discipline:Engineering Mechanics. Computational Mechanics. Aerospace Mechanics and Engineering. Solid Mechanics
Business Address:https://orcid.org/0000-0001-6652-7831
http://www.ideasdut.com
https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
https://www.researchgate.net/profile/Zhan_Kang
Contact Information:zhankang#dlut.edu.cn 13190104312
E-Mail:zhankang@dlut.edu.cn
Hits:
Indexed by:期刊论文
Date of Publication:2016-03-01
Journal:INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
Included Journals:SCIE、EI
Volume:81
Page Number:373-382
ISSN No.:0020-7683
Key Words:Hyperelasticity; Contact; Support; Topology optimization; Nonlinear spring
Abstract:Hyperelastic structures usually undergo large deformations and thus may be subject to deformation dependent contact supports. This paper presents an effective topology optimization methodology for the compliance-minimization design of hyperelastic structures with frictionless contact supports. In the optimization model, the strain-energy function of hyperelastic material is represented by an artificial penalization model, and the contact boundary conditions are modeled with hypothetical nonlinear springs. The additive hyperelasticity technique is employed for circumventing the local buckling instability exhibited by low-density elements. In conjunction with the adjoint variable sensitivity analysis, the nonlinear topology optimization problem is solved by a gradient-based mathematical programming algorithm. Numerical examples are given to show the importance of considering contact supports and to demonstrate the applicability of the proposed method. (C) 2015 Elsevier Ltd. All rights reserved.
Dr. Zhan Kang is a Changjiang Scholar Chair Professor of Dalian University of Technology. He graduated from Shanghai Jiaotong University in 1992, received his MEng in mechanics from Dalian University of Technology in 1995 and his Dr. –Ing. degree from Stuttgart University, Germany in 2005. His current research involves issues such as topology optimization, structural optimization under uncertainties, design optimization of smart structures and nanomechanics. Dr. Kang has published over 100 research papers in peer-reviewed international journals and one monograph. He has received 5500 citations and has an H-index of 39 (Google Scholar). Dr. Kang has been granted the Outstanding Youth Fund of Natural Science Foundation of China (NSFC). He has been principal investigator of 8 NSFC projects and a Key Project of Chinese National Programs for Fundamental Research and Development (973 Project). He has also conducted many consultancy projects.
Google Scholar Page: https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
https://orcid.org/0000-0001-6652-7831
http://www.ideasdut.com