Zhan Kang

Professor   Supervisor of Doctorate Candidates   Supervisor of Master's Candidates

Main positions:Deputy Dean, Faculty of Vehicle Engineering and Mechanics

Other Post:Deputy Dean, Faculty of Vehicle Engineering and Mechanics

Gender:Male

Alma Mater:Stuttgart University, Germany

Degree:Doctoral Degree

School/Department:Department of Engineering Mechanics/ State Key Laboratory of Structural Analysis for Industrial Equimpment

Discipline:Engineering Mechanics. Computational Mechanics. Aerospace Mechanics and Engineering. Solid Mechanics

Business Address:https://orcid.org/0000-0001-6652-7831
http://www.ideasdut.com
https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
https://www.researchgate.net/profile/Zhan_Kang

Contact Information:zhankang#dlut.edu.cn 13190104312

E-Mail:zhankang@dlut.edu.cn


Paper Publications

A velocity field level set method for shape and topology optimization

Hits:

Indexed by:期刊论文

Date of Publication:2018-09-14

Journal:INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING

Included Journals:SCIE

Volume:115

Issue:11

Page Number:1315-1336

ISSN No.:0029-5981

Key Words:general design variable; level set; mathematical programming algorithm; multiple constraints; topology optimization; velocity field

Abstract:In this paper, we propose a new implementation of the level set shape and topology optimization, the velocity field level set method. Therein, the normal velocity field is constructed with specified basis functions and velocity design variables defined on a given set of points that are independent of the finite element mesh. A general mathematical programming algorithm can be employed to find the optimal normal velocities on the basis of the sensitivity analysis. As compared with conventional level set methods, mapping the variational boundary shape optimization problem into a finite-dimensional design space and the use of a general optimizer makes it more efficient and straightforward to handle multiple constraints and additional design variables. Moreover, the level set function is updated by the Hamilton-Jacobi equation using the normal velocity field; thus, the inherent merits of the implicit representation is retained. Therefore, this method combines the merits of both the general mathematical programming and conventional level set methods. Integrated topology optimization of structures with embedded components of designable geometries is considered to show the capability of this method to deal with general design variables. Several numerical examples in 2D or 3D design domains illustrate the robustness and efficiency of the method using different basis functions.

Pre One:Integrated topology optimization of multi-component structures considering connecting interface behavior

Next One:考虑增材制造中悬空角约束的水平集拓扑优化设计

Profile

Dr. Zhan Kang is a Changjiang Scholar Chair Professor of Dalian University of Technology. He graduated from Shanghai Jiaotong University in 1992, received his MEng in mechanics from Dalian University of Technology in 1995 and his Dr. –Ing. degree from Stuttgart University, Germany in 2005. His current research involves issues such as topology optimization, structural optimization under uncertainties, design optimization of smart structures and nanomechanics. Dr. Kang has published over 100 research papers in peer-reviewed international journals and one monograph. He has received 5500 citations and has an H-index of 39 (Google Scholar). Dr. Kang has been granted the Outstanding Youth Fund of Natural Science Foundation of China (NSFC). He has been principal investigator of 8 NSFC projects and a Key Project of Chinese National Programs for Fundamental Research and Development (973 Project). He has also conducted many consultancy projects.

 

Google Scholar Page: https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao

https://orcid.org/0000-0001-6652-7831

http://www.ideasdut.com