Zhan Kang

Professor   Supervisor of Doctorate Candidates   Supervisor of Master's Candidates

Main positions:Deputy Dean, Faculty of Vehicle Engineering and Mechanics

Other Post:Deputy Dean, Faculty of Vehicle Engineering and Mechanics

Gender:Male

Alma Mater:Stuttgart University, Germany

Degree:Doctoral Degree

School/Department:Department of Engineering Mechanics/ State Key Laboratory of Structural Analysis for Industrial Equimpment

Discipline:Engineering Mechanics. Computational Mechanics. Aerospace Mechanics and Engineering. Solid Mechanics

Business Address:https://orcid.org/0000-0001-6652-7831
http://www.ideasdut.com
https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
https://www.researchgate.net/profile/Zhan_Kang

Contact Information:zhankang#dlut.edu.cn 13190104312

E-Mail:zhankang@dlut.edu.cn


Paper Publications

考虑不确定性与多场耦合的结构优化

Hits:

Indexed by:Journal Papers

Date of Publication:2016-10-26

Journal:科技创新导报

Volume:13

Issue:19

Page Number:177-178

ISSN No.:1674-098X

Key Words:结构优化;拓扑优化;不确定性;多场耦合;智能结构

Abstract:该研究在不确定性结构鲁棒性优化和压电智能结构拓扑优化方面的研究结果.首先基于不确定性的非概率椭球凸模型描述,研究了桁架结构的鲁棒性优化设计问题.考虑桁架结构弹性模量的不确定,并用非概率椭球凸模型处理不确定参数.提出了一种量化的结构鲁棒性度量方法.基于该度量模型,提出了结构鲁棒性优化问题的数学模型,其目标是要达到在体积约束条件下,选出结构中鲁棒性最小的一个功能函数,使其鲁棒性最大化.数值算例验证了优化模型的正确性和算法的有效性.我们考虑连续体结构载荷幅度等参数的有界不确定性,利用非概率椭球凸模型进行不确定性参数的界限描述,研究连续体结构的鲁棒性拓扑优化设计的建模与数值方法.为提高求解效率,利用位移与载荷的线性关系,提出一种基于解析几何方法的鲁棒性度量方法,从而避免了求解双层优化问题.基于该度量方法,优化模型的目标是在体积分数约束条件下寻求最优拓扑形式以最大化结构的位移鲁棒性.数值算例验证了优化模型的正确性和算法的有效性.具有狭长形状的压电作动器有利于输出较大的位移,而采用周期拼装方式实现这类结构则具有制造成本相对较低的优点.我们提出了基于周期拼装的平面压电作动器结构拓扑优化设计的数学模型.其中,以位移输出点作功最大化为设计目标,考虑了材料体积和控制能耗约束,对结构基体材料和压电材料的分布以及控制电压的分布进行优化设计.该文给出了结构响应的设计灵敏度分析,并采用基于梯度的数学规划方法对优化问题进行求解.数值算例验证了该文提出的数学模型和算法的可用性与有效性.

Pre One:AutoCAD 扩展实体数据接口方法及实现

Next One:epsilon-relaxation algorithm for truss topology optimization with local buckling constraints

Profile

Dr. Zhan Kang is a Changjiang Scholar Chair Professor of Dalian University of Technology. He graduated from Shanghai Jiaotong University in 1992, received his MEng in mechanics from Dalian University of Technology in 1995 and his Dr. –Ing. degree from Stuttgart University, Germany in 2005. His current research involves issues such as topology optimization, structural optimization under uncertainties, design optimization of smart structures and nanomechanics. Dr. Kang has published over 100 research papers in peer-reviewed international journals and one monograph. He has received 5500 citations and has an H-index of 39 (Google Scholar). Dr. Kang has been granted the Outstanding Youth Fund of Natural Science Foundation of China (NSFC). He has been principal investigator of 8 NSFC projects and a Key Project of Chinese National Programs for Fundamental Research and Development (973 Project). He has also conducted many consultancy projects.

 

Google Scholar Page: https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao

https://orcid.org/0000-0001-6652-7831

http://www.ideasdut.com