Zhan Kang

Professor   Supervisor of Doctorate Candidates   Supervisor of Master's Candidates

Main positions:Deputy Dean, Faculty of Vehicle Engineering and Mechanics

Other Post:Deputy Dean, Faculty of Vehicle Engineering and Mechanics

Gender:Male

Alma Mater:Stuttgart University, Germany

Degree:Doctoral Degree

School/Department:Department of Engineering Mechanics/ State Key Laboratory of Structural Analysis for Industrial Equimpment

Discipline:Engineering Mechanics. Computational Mechanics. Aerospace Mechanics and Engineering. Solid Mechanics

Business Address:https://orcid.org/0000-0001-6652-7831
http://www.ideasdut.com
https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
https://www.researchgate.net/profile/Zhan_Kang

Contact Information:zhankang#dlut.edu.cn 13190104312

E-Mail:zhankang@dlut.edu.cn


Paper Publications

考虑界面力学性能的组件及结构的协同优化

Hits:

Date of Publication:2022-10-06

Journal:Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics

Volume:53

Issue:6

Page Number:1758-1768

ISSN No.:0459-1879

Abstract:Structures that contain multiple embedded components and the host material are widely used in aerospace and other fields because of their lightweight, multi-functional, and other superior performances. Most existing topology optimization studies on multi-component structures assume the interfaces between different materials to be perfectly bonded, and thus ignore the possible interfacial failure. In this paper, we propose an efficient integrated optimization method to optimize components' shapes, layouts, and the host structural topology simultaneously, while considering the interfacial behaviors to achieve the maximum structural stiffness. First, the components' shapes and layouts are described explicitly and parameterized with the superellipse model, and the corresponding level set functions are constructed; then, combining level set topological description, the cohesive zone model and the extended finite element method (XFEM), the behaviors of interfaces that are evolving during the optimization iterations are computed on the fixed grid; further, the optimization formulation considering the interfacial behavior to achieve maximum structural stiffness is established, and the optimization problem is solved with a gradient-based algorithm with analytical sensitivities that are derived with the adjoint method. In this paper, we applied the optimization framework to design the cantilever beam and MBB beam with embedded transformable components respectively. During the optimization process, we found that the initial layouts of the components have a great influence on the final design and that may lead to undesired structures. To avoid this situation, we proposed a two-stage optimization strategy-the layouts and shapes of embedded components will be optimized first, and then the collaborative optimization will be carried out. The numerical examples show that in the optimized designs, the components together with their interfaces are usually distributed in regions that are under compression, and the optimized bonding interfaces exhibit small curvature. This result avoids the interface failure and improves the structural stiffness, and illustrates the effectiveness of the proposed optimization method. © 2021, Chinese Journal of Theoretical and Applied Mechanics Press. All right reserved.

Note:新增回溯数据

Pre One:Compression-driven collapse of nanotubes

Next One:A velocity field level set method for shape and topology optimization

Profile

Dr. Zhan Kang is a Changjiang Scholar Chair Professor of Dalian University of Technology. He graduated from Shanghai Jiaotong University in 1992, received his MEng in mechanics from Dalian University of Technology in 1995 and his Dr. –Ing. degree from Stuttgart University, Germany in 2005. His current research involves issues such as topology optimization, structural optimization under uncertainties, design optimization of smart structures and nanomechanics. Dr. Kang has published over 100 research papers in peer-reviewed international journals and one monograph. He has received 5500 citations and has an H-index of 39 (Google Scholar). Dr. Kang has been granted the Outstanding Youth Fund of Natural Science Foundation of China (NSFC). He has been principal investigator of 8 NSFC projects and a Key Project of Chinese National Programs for Fundamental Research and Development (973 Project). He has also conducted many consultancy projects.

 

Google Scholar Page: https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao

https://orcid.org/0000-0001-6652-7831

http://www.ideasdut.com