Zhan Kang
Professor Supervisor of Doctorate Candidates Supervisor of Master's Candidates
Main positions:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
Other Post:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
Gender:Male
Alma Mater:Stuttgart University, Germany
Degree:Doctoral Degree
School/Department:Department of Engineering Mechanics/ State Key Laboratory of Structural Analysis for Industrial Equimpment
Discipline:Engineering Mechanics. Computational Mechanics. Aerospace Mechanics and Engineering. Solid Mechanics
Business Address:https://orcid.org/0000-0001-6652-7831
http://www.ideasdut.com
https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
https://www.researchgate.net/profile/Zhan_Kang
Contact Information:zhankang#dlut.edu.cn 13190104312
E-Mail:zhankang@dlut.edu.cn
Hits:
Indexed by:期刊论文
Date of Publication:2014-09-01
Journal:COMPUTATIONAL MECHANICS
Included Journals:SCIE、EI、Scopus
Volume:54
Issue:3
Page Number:629-644
ISSN No.:0178-7675
Key Words:Topology optimization; Geometrical nonlinearity; Element-free Galerkin method; Independent point-wise density interpolation; Sensitivity
Abstract:Based on the element-free Galerkin (EFG) method, an analysis-independent density variable approach is proposed for topology optimization of geometrically nonlinear structures. This method eliminates the mesh distortion problem often encountered in the finite element analysis of large deformations. The topology optimization problem is formulated on the basis of point-wise description of the material density field. This density field is constructed by a physical meaning-preserving interpolation with the density values of the design variable points, which can be freely positioned independently of the field points used in the displacement analysis. An energy criterion of convergence is used to resolve the well-known convergence difficulty, which would be usually encountered in low density regions, where displacements oscillate severely during the optimization process. Numerical examples are given to demonstrate the effectiveness of the developed approach. It is shown that relatively clear optimal solutions can be achieved, without exhibiting numerical instabilities like the so-called "layering" or "islanding" phenomena even in large deformation cases. This study not only confirms the potential of the EFG method in topology optimization involving large deformations, but also provides a novel topology optimization framework based on element-free discretization of displacement and density fields, which can also easily incorporate other meshless analysis methods for specific purposes.
Dr. Zhan Kang is a Changjiang Scholar Chair Professor of Dalian University of Technology. He graduated from Shanghai Jiaotong University in 1992, received his MEng in mechanics from Dalian University of Technology in 1995 and his Dr. –Ing. degree from Stuttgart University, Germany in 2005. His current research involves issues such as topology optimization, structural optimization under uncertainties, design optimization of smart structures and nanomechanics. Dr. Kang has published over 100 research papers in peer-reviewed international journals and one monograph. He has received 5500 citations and has an H-index of 39 (Google Scholar). Dr. Kang has been granted the Outstanding Youth Fund of Natural Science Foundation of China (NSFC). He has been principal investigator of 8 NSFC projects and a Key Project of Chinese National Programs for Fundamental Research and Development (973 Project). He has also conducted many consultancy projects.
Google Scholar Page: https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
https://orcid.org/0000-0001-6652-7831
http://www.ideasdut.com