Zhan Kang

Professor   Supervisor of Doctorate Candidates   Supervisor of Master's Candidates

Main positions:Deputy Dean, Faculty of Vehicle Engineering and Mechanics

Other Post:Deputy Dean, Faculty of Vehicle Engineering and Mechanics

Gender:Male

Alma Mater:Stuttgart University, Germany

Degree:Doctoral Degree

School/Department:Department of Engineering Mechanics/ State Key Laboratory of Structural Analysis for Industrial Equimpment

Discipline:Engineering Mechanics. Computational Mechanics. Aerospace Mechanics and Engineering. Solid Mechanics

Business Address:https://orcid.org/0000-0001-6652-7831
http://www.ideasdut.com
https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
https://www.researchgate.net/profile/Zhan_Kang

Contact Information:zhankang#dlut.edu.cn 13190104312

E-Mail:zhankang@dlut.edu.cn


Paper Publications

Adaptive topology optimization with independent error control for separated displacement and density fields

Hits:

Indexed by:期刊论文

Date of Publication:2014-04-15

Journal:COMPUTERS & STRUCTURES

Included Journals:SCIE、EI、Scopus

Volume:135

Page Number:50-61

ISSN No.:0045-7949

Key Words:Topology optimization; Adaptive refinement; Independent error control; Independent Point-wise Density Interpolation; Nodal design variable; GTR indicator

Abstract:This paper proposes a new adaptive method for topology optimization of structures, by using independent error control for the separated displacement and material density fields. Since the arrangement of the density points is unnecessarily associated with the analysis mesh in the topology optimization based on analysis-separated density interpolation, the refinements of each field can be separately implemented. Here, the analysis mesh is refined to improve the computational accuracy of the displacement field and the associated strain field within certain local regions (e.g. the regions around concentrated loading points and displacement restrictions), while the density field is refined in the regions between fully solid and void phases to improve the geometrical description quality of design boundaries. With such a strategy, the refinements of the analysis mesh and the density field are naturally separated and not bond together anymore. Actually, each refinement process is independently performed only when and where necessary. Numerical examples show that the proposed method can achieve high-quality and high-accuracy optimal solutions comparable to those obtained with fixed globally fine analysis meshes and fine distributed density points, but with much less computational cost. (C) 2014 Elsevier Ltd. All rights reserved.

Pre One:Topological shape optimization of microstructural metamaterials using a level set method

Next One:Topology optimization of piezoelectric layers in plates with active vibration control

Profile

Dr. Zhan Kang is a Changjiang Scholar Chair Professor of Dalian University of Technology. He graduated from Shanghai Jiaotong University in 1992, received his MEng in mechanics from Dalian University of Technology in 1995 and his Dr. –Ing. degree from Stuttgart University, Germany in 2005. His current research involves issues such as topology optimization, structural optimization under uncertainties, design optimization of smart structures and nanomechanics. Dr. Kang has published over 100 research papers in peer-reviewed international journals and one monograph. He has received 5500 citations and has an H-index of 39 (Google Scholar). Dr. Kang has been granted the Outstanding Youth Fund of Natural Science Foundation of China (NSFC). He has been principal investigator of 8 NSFC projects and a Key Project of Chinese National Programs for Fundamental Research and Development (973 Project). He has also conducted many consultancy projects.

 

Google Scholar Page: https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao

https://orcid.org/0000-0001-6652-7831

http://www.ideasdut.com