Zhan Kang
Professor Supervisor of Doctorate Candidates Supervisor of Master's Candidates
Main positions:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
Other Post:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
Gender:Male
Alma Mater:Stuttgart University, Germany
Degree:Doctoral Degree
School/Department:Department of Engineering Mechanics/ State Key Laboratory of Structural Analysis for Industrial Equimpment
Discipline:Engineering Mechanics. Computational Mechanics. Aerospace Mechanics and Engineering. Solid Mechanics
Business Address:https://orcid.org/0000-0001-6652-7831
http://www.ideasdut.com
https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
https://www.researchgate.net/profile/Zhan_Kang
Contact Information:zhankang#dlut.edu.cn 13190104312
E-Mail:zhankang@dlut.edu.cn
Hits:
Indexed by:期刊论文
Date of Publication:2013-01-01
Journal:STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
Included Journals:SCIE、EI、Scopus
Volume:47
Issue:1
Page Number:95-110
ISSN No.:1615-147X
Key Words:Reinforced concrete structures; Topology optimization; Drucker-Prager criterion; Sensitivity analysis; Constraint-reduction strategy
Abstract:This paper aims to develop a method that can automatically generate the optimal layout of reinforced concrete structures by incorporating concrete strength constraints into the two-material topology optimization formulation. The Drucker-Prager yield criterion is applied to predict the failure behavior of concrete. By using the power-law interpolation, the proposed optimization model is stated as a minimum compliance problem under the yield stress constraints on concrete elements and the material volume constraint of steel. The epsilon-relaxation technique is employed to prevent the stress singularity. A hybrid constraint-reduction strategy, in conjunction with the adjoint-variable sensitivity information, is integrated into a gradient-based optimization algorithm to overcome the numerical difficulties that arise from large-scale constraints. It can be concluded from numerical investigations that the proposed model is suitable for obtaining a reasonable layout which makes the best uses of the compressive strength of concrete and the tensile strength of steel. Numerical results also reveal that the hybrid constraint-reduction strategy is effective in solving the topology optimization problems involving a large number of constraints.
Dr. Zhan Kang is a Changjiang Scholar Chair Professor of Dalian University of Technology. He graduated from Shanghai Jiaotong University in 1992, received his MEng in mechanics from Dalian University of Technology in 1995 and his Dr. –Ing. degree from Stuttgart University, Germany in 2005. His current research involves issues such as topology optimization, structural optimization under uncertainties, design optimization of smart structures and nanomechanics. Dr. Kang has published over 100 research papers in peer-reviewed international journals and one monograph. He has received 5500 citations and has an H-index of 39 (Google Scholar). Dr. Kang has been granted the Outstanding Youth Fund of Natural Science Foundation of China (NSFC). He has been principal investigator of 8 NSFC projects and a Key Project of Chinese National Programs for Fundamental Research and Development (973 Project). He has also conducted many consultancy projects.
Google Scholar Page: https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
https://orcid.org/0000-0001-6652-7831
http://www.ideasdut.com