Zhan Kang

Professor   Supervisor of Doctorate Candidates   Supervisor of Master's Candidates

Main positions:Deputy Dean, Faculty of Vehicle Engineering and Mechanics

Other Post:Deputy Dean, Faculty of Vehicle Engineering and Mechanics

Gender:Male

Alma Mater:Stuttgart University, Germany

Degree:Doctoral Degree

School/Department:Department of Engineering Mechanics/ State Key Laboratory of Structural Analysis for Industrial Equimpment

Discipline:Engineering Mechanics. Computational Mechanics. Aerospace Mechanics and Engineering. Solid Mechanics

Business Address:https://orcid.org/0000-0001-6652-7831
http://www.ideasdut.com
https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
https://www.researchgate.net/profile/Zhan_Kang

Contact Information:zhankang#dlut.edu.cn 13190104312

E-Mail:zhankang@dlut.edu.cn


Paper Publications

On topology optimization of damping layer in shell structures under harmonic excitations

Hits:

Indexed by:期刊论文

Date of Publication:2012-07-01

Journal:STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION

Included Journals:SCIE、EI、Scopus

Volume:46

Issue:1

Page Number:51-67

ISSN No.:1615-147X

Key Words:Topology optimization; Damping material; Non-proportional damping; Complex mode superposition method; State space approach; Sensitivity

Abstract:This paper investigates the optimal distribution of damping material in vibrating structures subject to harmonic excitations by using topology optimization method. Therein, the design objective is to minimize the structural vibration level at specified positions by distributing a given amount of damping material. An artificial damping material model that has a similar form as in the SIMP approach is suggested and the relative densities of the damping material are taken as design variables. The vibration equation of the structure has a non-proportional damping matrix. A system reduction procedure is first performed by using the eigenmodes of the undamped system. The complex mode superposition method in the state space, which can deal with the non-proportional damping, is then employed to calculate the steady-state response of the vibrating structure. In this context, an adjoint variable scheme for the response sensitivity analysis is developed. Numerical examples are presented for illustrating validity and efficiency of this approach. Impacts of the excitation frequency as well as the damping coefficients on topology optimization results are also discussed.

Pre One:Maximal Stiffness Design of Two-Material Structures by Topology Optimization with Nonprobabilistic Reliability

Next One:Mechanics of Epidermal Electronics

Profile

Dr. Zhan Kang is a Changjiang Scholar Chair Professor of Dalian University of Technology. He graduated from Shanghai Jiaotong University in 1992, received his MEng in mechanics from Dalian University of Technology in 1995 and his Dr. –Ing. degree from Stuttgart University, Germany in 2005. His current research involves issues such as topology optimization, structural optimization under uncertainties, design optimization of smart structures and nanomechanics. Dr. Kang has published over 100 research papers in peer-reviewed international journals and one monograph. He has received 5500 citations and has an H-index of 39 (Google Scholar). Dr. Kang has been granted the Outstanding Youth Fund of Natural Science Foundation of China (NSFC). He has been principal investigator of 8 NSFC projects and a Key Project of Chinese National Programs for Fundamental Research and Development (973 Project). He has also conducted many consultancy projects.

 

Google Scholar Page: https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao

https://orcid.org/0000-0001-6652-7831

http://www.ideasdut.com