Zhan Kang

Professor   Supervisor of Doctorate Candidates   Supervisor of Master's Candidates

Main positions:Deputy Dean, Faculty of Vehicle Engineering and Mechanics

Other Post:Deputy Dean, Faculty of Vehicle Engineering and Mechanics

Gender:Male

Alma Mater:Stuttgart University, Germany

Degree:Doctoral Degree

School/Department:Department of Engineering Mechanics/ State Key Laboratory of Structural Analysis for Industrial Equimpment

Discipline:Engineering Mechanics. Computational Mechanics. Aerospace Mechanics and Engineering. Solid Mechanics

Business Address:https://orcid.org/0000-0001-6652-7831
http://www.ideasdut.com
https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
https://www.researchgate.net/profile/Zhan_Kang

Contact Information:zhankang#dlut.edu.cn 13190104312

E-Mail:zhankang@dlut.edu.cn


Paper Publications

Topology Optimization for Static Shape Control of Piezoelectric Plates With Penalization on Intermediate Actuation Voltage

Hits:

Indexed by:期刊论文

Date of Publication:2012-05-01

Journal:JOURNAL OF MECHANICAL DESIGN

Included Journals:SCIE、EI、Scopus

Volume:134

Issue:5

ISSN No.:1050-0472

Key Words:optimal design; topology optimization; piezoelectric; shape control; actuation voltage

Abstract:This paper investigates the simultaneous optimal distribution of structural material and trilevel actuation voltage for static shape control applications. In this optimal design problem, the shape error between the actuated and the desired shapes is chosen as the objective function. The energy and the material volume are taken as constraints in the optimization problem formulation. The discrete-valued optimization problem is relaxed using element-wise continuous design variables representing the relative material density and the actuation voltage level. Artificial interpolation models which relate the mechanical/piezoelectrical properties of the material and the actuation voltage to the design variables are employed. Therein, power-law penalization functions are used to suppress intermediate values of both the material densities and the control voltage. The sensitivity analysis procedure is discussed, and the design variables are optimized by using the method of moving asymptotes (MMA). Finally, numerical examples are presented to demonstrate the applicability and effectiveness of the proposed method. It is shown that the proposed method is able to yield distinct material distribution and to suppress intermediate actuation voltage values as required. [DOI:10.1115/1.4006527]

Pre One:Mechanics of Epidermal Electronics

Next One:A nodal variable method of structural topology optimization based on Shepard interpolant

Profile

Dr. Zhan Kang is a Changjiang Scholar Chair Professor of Dalian University of Technology. He graduated from Shanghai Jiaotong University in 1992, received his MEng in mechanics from Dalian University of Technology in 1995 and his Dr. –Ing. degree from Stuttgart University, Germany in 2005. His current research involves issues such as topology optimization, structural optimization under uncertainties, design optimization of smart structures and nanomechanics. Dr. Kang has published over 100 research papers in peer-reviewed international journals and one monograph. He has received 5500 citations and has an H-index of 39 (Google Scholar). Dr. Kang has been granted the Outstanding Youth Fund of Natural Science Foundation of China (NSFC). He has been principal investigator of 8 NSFC projects and a Key Project of Chinese National Programs for Fundamental Research and Development (973 Project). He has also conducted many consultancy projects.

 

Google Scholar Page: https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao

https://orcid.org/0000-0001-6652-7831

http://www.ideasdut.com