Zhan Kang

Professor   Supervisor of Doctorate Candidates   Supervisor of Master's Candidates

Main positions:Deputy Dean, Faculty of Vehicle Engineering and Mechanics

Other Post:Deputy Dean, Faculty of Vehicle Engineering and Mechanics

Gender:Male

Alma Mater:Stuttgart University, Germany

Degree:Doctoral Degree

School/Department:Department of Engineering Mechanics/ State Key Laboratory of Structural Analysis for Industrial Equimpment

Discipline:Engineering Mechanics. Computational Mechanics. Aerospace Mechanics and Engineering. Solid Mechanics

Business Address:https://orcid.org/0000-0001-6652-7831
http://www.ideasdut.com
https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
https://www.researchgate.net/profile/Zhan_Kang

Contact Information:zhankang#dlut.edu.cn 13190104312

E-Mail:zhankang@dlut.edu.cn


Paper Publications

Topology optimization of continuum structures with Drucker-Prager yield stress constraints

Hits:

Indexed by:期刊论文

Date of Publication:2012-01-01

Journal:COMPUTERS & STRUCTURES

Included Journals:SCIE、EI

Volume:90-91

Issue:1

Page Number:65-75

ISSN No.:0045-7949

Key Words:Topology optimization; Stress constraint; Drucker-Prager criterion; Sensitivity analysis

Abstract:This paper presents an efficient topology optimization strategy for seeking the optimal layout of continuum structures exhibiting asymmetrical strength behaviors in compression and tension. Based on the Drucker-Prager yield criterion and the power-law interpolation scheme for the material property, the optimization problem is formulated as to minimize the material volume under local stress constraints. The epsilon-relaxation of stress constraints is adopted to circumvent the stress singularity problem. For improving the computational efficiency, a grouped aggregation approach based on the Kreisselmeier-Steinhauser function is employed to reduce the number of constraints without much sacrificing the approximation accuracy of the stress constraints. In conjunction with the adjoint-variable sensitivity analysis, the minimization problem is solved by a gradient-based optimization algorithm. Numerical examples demonstrate the validity of the present optimization model as well as the efficiency of the proposed numerical techniques. Moreover, it is also revealed that the optimal design of a structure with pressure-dependent material may exhibit a considerable different topology from the one obtained with pressure-independent material model. (C) 2011 Elsevier Ltd. All rights reserved.

Pre One:Sensitivity analysis of viscoplastic deformation process with application to metal preform design optimization

Next One:Parametric study of bonded steel-concrete composite beams by using finite element analysis

Profile

Dr. Zhan Kang is a Changjiang Scholar Chair Professor of Dalian University of Technology. He graduated from Shanghai Jiaotong University in 1992, received his MEng in mechanics from Dalian University of Technology in 1995 and his Dr. –Ing. degree from Stuttgart University, Germany in 2005. His current research involves issues such as topology optimization, structural optimization under uncertainties, design optimization of smart structures and nanomechanics. Dr. Kang has published over 100 research papers in peer-reviewed international journals and one monograph. He has received 5500 citations and has an H-index of 39 (Google Scholar). Dr. Kang has been granted the Outstanding Youth Fund of Natural Science Foundation of China (NSFC). He has been principal investigator of 8 NSFC projects and a Key Project of Chinese National Programs for Fundamental Research and Development (973 Project). He has also conducted many consultancy projects.

 

Google Scholar Page: https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao

https://orcid.org/0000-0001-6652-7831

http://www.ideasdut.com