Zhan Kang

Professor   Supervisor of Doctorate Candidates   Supervisor of Master's Candidates

Main positions:Deputy Dean, Faculty of Vehicle Engineering and Mechanics

Other Post:Deputy Dean, Faculty of Vehicle Engineering and Mechanics

Gender:Male

Alma Mater:Stuttgart University, Germany

Degree:Doctoral Degree

School/Department:Department of Engineering Mechanics/ State Key Laboratory of Structural Analysis for Industrial Equimpment

Discipline:Engineering Mechanics. Computational Mechanics. Aerospace Mechanics and Engineering. Solid Mechanics

Business Address:https://orcid.org/0000-0001-6652-7831
http://www.ideasdut.com
https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
https://www.researchgate.net/profile/Zhan_Kang

Contact Information:zhankang#dlut.edu.cn 13190104312

E-Mail:zhankang@dlut.edu.cn


Paper Publications

Combined optimization of bi-material structural layout and voltage distribution for in-plane piezoelectric actuation

Hits:

Indexed by:期刊论文

Date of Publication:2011-03-01

Journal:COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING

Included Journals:SCIE、EI

Volume:200

Issue:13-16

Page Number:1467-1478

ISSN No.:0045-7825

Key Words:Topology optimization; Bi-material; Active structures; Piezoelectric; Actuation voltage

Abstract:This paper investigates the combined optimization of bi-material structural layout and actuation voltage distribution of structures with embedded in-plane piezoelectric actuators. The maximization of the nodal displacement at a selected output port is considered as the design objective. A two-phase material model with power-law penalization is employed in the topology optimization of the actuator elements and the coupled surrounding structure. In order to incorporate the actuation voltage directly into the design for achieving the best overall actuation performance, element-wise voltage design variables are also included in the optimization. For the purpose of easy implementation of the electric system, the allowable voltage levels at an individual element are confined to three discrete values, namely zero and two prescribed values with opposite signs. To this end, a special interpolation scheme between the tri-level voltage values and the design variables is used in the optimization model. Based on the design sensitivity analysis of the objective function, the combined optimization problem is solved with the MMA algorithm. Numerical examples are presented to demonstrate the applicability of the proposed optimization model and numerical techniques. The optimal solutions also confirmed that larger output displacement can be achieved by introducing voltage design variables into the design problem. (C) 2011 Elsevier B.V. All rights reserved.

Pre One:Study on compressive buckling behavior of carbon intramolecular junctions

Next One:An analytical model of strain isolation for stretchable and flexible electronics

Profile

Dr. Zhan Kang is a Changjiang Scholar Chair Professor of Dalian University of Technology. He graduated from Shanghai Jiaotong University in 1992, received his MEng in mechanics from Dalian University of Technology in 1995 and his Dr. –Ing. degree from Stuttgart University, Germany in 2005. His current research involves issues such as topology optimization, structural optimization under uncertainties, design optimization of smart structures and nanomechanics. Dr. Kang has published over 100 research papers in peer-reviewed international journals and one monograph. He has received 5500 citations and has an H-index of 39 (Google Scholar). Dr. Kang has been granted the Outstanding Youth Fund of Natural Science Foundation of China (NSFC). He has been principal investigator of 8 NSFC projects and a Key Project of Chinese National Programs for Fundamental Research and Development (973 Project). He has also conducted many consultancy projects.

 

Google Scholar Page: https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao

https://orcid.org/0000-0001-6652-7831

http://www.ideasdut.com