Zhan Kang

Professor   Supervisor of Doctorate Candidates   Supervisor of Master's Candidates

Main positions:Deputy Dean, Faculty of Vehicle Engineering and Mechanics

Other Post:Deputy Dean, Faculty of Vehicle Engineering and Mechanics

Gender:Male

Alma Mater:Stuttgart University, Germany

Degree:Doctoral Degree

School/Department:Department of Engineering Mechanics/ State Key Laboratory of Structural Analysis for Industrial Equimpment

Discipline:Engineering Mechanics. Computational Mechanics. Aerospace Mechanics and Engineering. Solid Mechanics

Business Address:https://orcid.org/0000-0001-6652-7831
http://www.ideasdut.com
https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
https://www.researchgate.net/profile/Zhan_Kang

Contact Information:zhankang#dlut.edu.cn 13190104312

E-Mail:zhankang@dlut.edu.cn


Paper Publications

Buckling behavior of carbon nanotube-based intramolecular junctions under compression: Molecular dynamics simulation and finite element analysis

Hits:

Indexed by:期刊论文

Date of Publication:2010-11-01

Journal:COMPUTATIONAL MATERIALS SCIENCE

Included Journals:SCIE、EI、Scopus

Volume:50

Issue:1

Page Number:253-259

ISSN No.:0927-0256

Key Words:Carbon nanotube; Intramolecular junctions; Strain rate; Buckling; Molecular dynamics; Finite element

Abstract:Intramolecular junctions (IMJs) formed by connecting two arbitrary carbon nanotubes (CNTs) can act as functional building blocks in circuits and components of CNT-based electronics devices. While extensive studies have been conducted on the atomic structural as well as electrical properties of IMJs and great advances have been achieved, mechanical response of IMJs under large deformation, which may exert significant effects on their electrical properties, are still not fully explored. In this paper, both molecular dynamics (MD) simulation and finite element (FE) analysis are employed to investigate the buckling behavior of IMJs under axial compression. The strain rate effects are firstly studied in the MD simulations. It is found that the critical compressive strain is not sensitive to the strain rate of relatively low range, but it exhibits a strong dependency upon the strain rate under high speed compression. In particular, a different failure mode may occur under ultra-high loading velocities. Based on the discussion on the strain rate effects, a reasonable loading velocity is suggested to be adopted in the subsequent MD simulations. In this study, the results of both the MD simulations and the FE analyses indicate that the critical compressive strain is dependent upon the length, radial dimensions of the IMJ but insensitive to the chirality of the IMJ. The comparison between the results of the MD simulations and the FE analyses also confirms that the FE analysis is able to provide useful insights into the compressive behavior of CNT-based IMJs with a much less computational cost. (C) 2010 Elsevier B.V. All rights reserved.

Pre One:A strain-isolation design for stretchable electronics

Next One:Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics

Profile

Dr. Zhan Kang is a Changjiang Scholar Chair Professor of Dalian University of Technology. He graduated from Shanghai Jiaotong University in 1992, received his MEng in mechanics from Dalian University of Technology in 1995 and his Dr. –Ing. degree from Stuttgart University, Germany in 2005. His current research involves issues such as topology optimization, structural optimization under uncertainties, design optimization of smart structures and nanomechanics. Dr. Kang has published over 100 research papers in peer-reviewed international journals and one monograph. He has received 5500 citations and has an H-index of 39 (Google Scholar). Dr. Kang has been granted the Outstanding Youth Fund of Natural Science Foundation of China (NSFC). He has been principal investigator of 8 NSFC projects and a Key Project of Chinese National Programs for Fundamental Research and Development (973 Project). He has also conducted many consultancy projects.

 

Google Scholar Page: https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao

https://orcid.org/0000-0001-6652-7831

http://www.ideasdut.com