Zhan Kang
Professor Supervisor of Doctorate Candidates Supervisor of Master's Candidates
Main positions:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
Other Post:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
Gender:Male
Alma Mater:Stuttgart University, Germany
Degree:Doctoral Degree
School/Department:Department of Engineering Mechanics/ State Key Laboratory of Structural Analysis for Industrial Equimpment
Discipline:Engineering Mechanics. Computational Mechanics. Aerospace Mechanics and Engineering. Solid Mechanics
Business Address:https://orcid.org/0000-0001-6652-7831
http://www.ideasdut.com
https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
https://www.researchgate.net/profile/Zhan_Kang
Contact Information:zhankang#dlut.edu.cn 13190104312
E-Mail:zhankang@dlut.edu.cn
Hits:
Indexed by:期刊论文
Date of Publication:2009-04-01
Journal:COMPUTERS & STRUCTURES
Included Journals:SCIE、EI
Volume:87
Issue:7-8
Page Number:425-434
ISSN No.:0045-7949
Key Words:Shape optimization; Topology optimization; Level set methods; Radial basis functions; Parameterization
Abstract:This paper presents an alternative level set method for shape and topology optimization of continuum structures. An implicit free boundary representation model is established by embedding structural boundary into the zero level set of a higher-dimensional level set function. An explicit parameterization scheme for the level set surface is proposed by using radial basis functions with compact support. In doing so, the originally more difficult shape and topology optimization, driven by the temporal and spatial Hamilton-Jacobi partial differential equation (PDE), is transformed into a relatively easier size optimization of the expansion coefficients of the basis functions. The design optimization is converted to an iterative numerical process that combines the parameterization with a derivation of the shape sensitivity of the design functions, so as to allow using mathematical programming algorithms to solve the level set-based design problem and avoid directly solving the Hamilton-Jacobi PDE. Furthermore, a numerically more stable and efficient volume integration scheme is proposed to implement calculations of the shape derivatives, leading to the creation of new holes which are generated initially along the boundary and then propagated to the interior of the design domain. Two widely studied examples are used to demonstrate the effectiveness of the proposed optimization method. (C) 2009 Elsevier Ltd. All rights reserved.
Dr. Zhan Kang is a Changjiang Scholar Chair Professor of Dalian University of Technology. He graduated from Shanghai Jiaotong University in 1992, received his MEng in mechanics from Dalian University of Technology in 1995 and his Dr. –Ing. degree from Stuttgart University, Germany in 2005. His current research involves issues such as topology optimization, structural optimization under uncertainties, design optimization of smart structures and nanomechanics. Dr. Kang has published over 100 research papers in peer-reviewed international journals and one monograph. He has received 5500 citations and has an H-index of 39 (Google Scholar). Dr. Kang has been granted the Outstanding Youth Fund of Natural Science Foundation of China (NSFC). He has been principal investigator of 8 NSFC projects and a Key Project of Chinese National Programs for Fundamental Research and Development (973 Project). He has also conducted many consultancy projects.
Google Scholar Page: https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
https://orcid.org/0000-0001-6652-7831
http://www.ideasdut.com