个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:日本东京农工大学
学位:博士
所在单位:环境学院
电子邮箱:wangdong@dlut.edu.cn
Synthesis of Nano-Fe@NdFeB/AC magnetic catalytic particle electrodes and application in the degradation of 2,4,6-trichlorophenol by electro-assisted peroxydisulfate process
点击次数:
论文类型:期刊论文
发表时间:2019-01-14
发表刊物:Environmental technology
收录刊物:PubMed、Scopus
页面范围:1-14
ISSN号:1479-487X
关键字:2,4,6-trichlorophenol,Magnetic catalytic,electro-assisted PDS activation,novel magnetic internal circulation electrolytic reactor,particle electrodes
摘要:The coupling of electrolysis and the peroxydisulfate (PDS) activation was selected in this study to degrade solution-phase 2,4,6-trichlorophenol (TCP). To enhance the PDS activation efficiency and catalytic recycling ratio, a novel magnetic activator, nano iron coated on neodymium iron boron/activated carbon nanocomposite (Nano-Fe@NdFeB/AC), was synthesized and utilized as catalytic particle electrodes. To increase the mass transfer ability, a novel magnetic internal circulation electrolytic reactor (MICE) was established. The results indicated that globular Fe, with sizes ranging from 25 nm to 300 nm, is present on the surface of the catalyst. This catalyst has sufficient magnetism to be separated by the magnetic separation method and its specific saturation magnetization and residual magnetization were 1.48 and 0.26 emu/g, respectively. At the optimal condition of [pH]0 = 9.0, [Na2S2O8]0 = 2.0 mmol/L, [Nano-Fe@NdFeB/AC]0 = 5.0 g/L and I = 50 mA, the TOC percentage of removal could reach 84% after 30 min of reaction. The TCP mineralization follows pseudo-first-order kinetics. The intermediate products of 2,6-dichloro-2,5-cyclohexadiene-1,4-dione, Tetrachloro-hydroquinone, and 2,3,5,6-tetrachloro-p-benzoquinone were found during the reaction. TCP mineralization was confirmed to have a hybrid mechanism involving reductive dechlorination with Fe, •OH addition oxidation and electron capture by SO•4-. This study provides a new method for the treatment of degradation-resistant pollutants.